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Abstract

The development of large datasets of natural images has galvanized progress in psychology, neuroscience, and computer
science. Notably, the THINGS database constitutes a collective effort towards understanding of human visual knowledge by
accumulating rich data on a shared set of visual object concepts across several studies. In this paper, we introduce Drawing
of THINGS (DoT), a novel dataset of 28,627 human drawings of 1854 diverse object concepts, sampled systematically
from concrete picturable and nameable nouns in the American English language, mirroring the structure of the THINGS
image database. In addition to data on drawings’ stroke history, we further collected fine-grained recognition data for each
drawing, along with metadata on participant demographics, drawing ability, and mental imagery. We characterize people’s
ability to communicate and recognize semantic information encoded in drawings and compare this ability to their ability to
recognize real-world images of the same visual objects. We also explore the relationship between drawing understanding and
the memorability and typicality of the objects contained in THINGS. In sum, we envision DoT as a powerful tool that builds

on the THINGS database to advance understanding of how humans express knowledge about visual concepts.
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Introduction

A central goal in the cognitive sciences is to understand
how semantic knowledge is organized in the mind and brain.
Visual semantic knowledge (Thompson-Schill et al., 1999;
Warrington & Shallice, 1984) in particular is implicated in
object recognition (DiCarlo et al., 2012; De Lange et al.,
2018; Gauthier & Tarr, 2016; Huth et al., 2012; Rogers et
al., 2003), the encoding of objects in memory (Rogers et
al., 2004; Konkle et al., 2010; Cunningham & Wolfe, 2014),
and organizing perceived similarity among objects (Mur et
al., 2013; Charest et al., 2014; Tversky, 1977; Rosch, 1975;
Muttenthaler et al., 2022; Hebart et al., 2020). Recent years
have seen important advances in the elucidation of the rep-
resentational structure of visual semantic knowledge — how
concepts are situated with respect to each other and the fea-
tures that shape this organization (Hebart et al., 2020; Fu et
al., 2023; Caplette & Turk-Browne, 2024; Mur et al., 2013).
This has been facilitated by two key advances: (1) the devel-
opment of large image datasets that are representative of the
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object concepts that people are familiar with (Hebart et al.,
2019, 2023; Mehreretal.,2021; Allenetal.,2022) and (2) the
dense annotation and augmentation of the items within these
datasets with behavioral and neural measurements (Stoinski
et al., 2023; Grootswagers et al., 2022; Kramer et al., 2023;
Hansen & Hebart, 2022; Vanasse et al., 2022). Experimental
results based on such datasets are valuable insofar as con-
clusions derived from them are not restricted to a handful
of experimenter-curated stimuli and are much more likely
to generalize broadly. The use and development of these
datasets have also contributed to a more cohesive body of
research with methods and data that are interoperable across
studies, a strategy that has been fruitful in other fields, espe-
cially computer science (Deng et al., 2009; Schuhmann et
al., 2022; Everingham et al., 2010; Sharma et al., 2018; Lin
et al., 2014).

Here we harness the study of drawing production and
recognition at scale to advance understanding of visual
semantic knowledge. While open-ended verbal production,
such as generating feature lists for concepts, has been cen-
tral to investigations of semantic cognition for many decades
(McRae et al., 2005; Devereux et al., 2014; De Deyne et al.,
2008), there has been a rapid recent development of meth-
ods for using visual production to investigate the content
and organization of conceptual knowledge (Mukherjee &
Rogers, 2024; Mukherjee et al., 2019; Long et al., 2024; Fan
etal., 2023). Drawing tasks have been used in studies of per-
ception (Biederman & Ju, 1988; Sayim & Cavanagh, 2011;
Yang & Fan, 2021), development (Long et al., 2024; Dillon,
2021), learning (Fan et al., 2018; Chamberlain et al., 2021),
memory (Bainbridge et al., 2021, 2019; Megla et al., 2025;
Bozeat et al., 2003), and others. The importance and util-
ity of using line drawing-based pictorial representations of
objects as a tool for understanding visual and semantic cog-
nition can be seen in the widespread adoption of even early
datasets such as the one curated by Snodgrass et al. (1980)
in the study of human (Thompson-Schill et al., 1997; Pat-
terson et al., 2007; Alvarez & Cavanagh, 2004; Singer et al.,
2023) and machine (Kubilius et al., 2016; Singer et al., 2022;
Mukherjee et al., 2024) vision. Due to their abstract nature
and divergences in low-level visual features relative to real-
world objects, drawings have also served as key test items for
the cognitive benchmarking of artificial vision and learning
systems (Singer et al., 2022; Mukherjee et al., 2024; Mukher-
jee & Rogers, 2024; Boutin et al., 2023; Wang et al., 2021;
Lake et al., 2015). Thus, drawings provide ways to probe
human visual knowledge using open-ended responses that
complement the closed-set response space used in standard
recognition and discrimination tasks. This open-ended nature
of drawing is important because it can provide insight into
the contents of human mental representation in trial-efficient
ways. For example, Bainbridge et al. (2019) used a drawing-
based approach to ask participants to reproduce visual scenes
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from memory. The use of drawing as a medium allowed the
researchers to detect when participants failed to reproduce
specific objects or when they mis-remembered where objects
were located within the scene. Drawing tasks have also been
used to characterize the enrichment of visual concept knowl-
edge throughout middle childhood (Long et al., 2024), and
to characterize what parts of objects people deem relevant
to include in a drawing depending on their communicative
goals (Fan et al., 2020; Mukherjee et al., 2019; Huey et al.,
2023).

Several drawing datasets already exist that were developed
using web-based tools (De Leeuw, 2015; Bainbridge, 2022)
and crowdworking platforms, such as Amazon Mechanical
Turk (AMT). Sheepmarket (Koblin, 2009), a dataset of over
10,000 drawings of sheep collected from such a set of crowd
workers, was an early proof of concept that reasonably high-
quality drawing data can be collected through this medium.
Later, Eitz et al. (2012) developed the TU-Berlin dataset rep-
resenting 250 classes, but with over 20,000 drawings in the
dataset drawn by non-experts on Amazon Mechanical Turk
(AMT), increasing the overall semantic diversity and scale
of drawing datasets. A similar approach of collecting crowd-
sourced drawings was adopted by Sangkloy et al. (2016),
who collected over 75,000 unique drawings of 125 categories
to build the Sketchy dataset. A unique aspect of this latter
dataset was that each drawing was based on a real-world pho-
tograph, allowing for comparisons of human and machine
visual recognition of the common objects across modali-
ties. Google’s Quick! Draw game (Jongejan et al., 2017),
an online game where people could make drawings and have
an Al system guess a label for it, led to the development of
a dataset of over 50 million sketches of 345 categories, the
first dataset to allow for training data-intensive deep learning
models (Ha & Eck, 2017). Long et al. (2024) introduced a
drawing dataset of over 37,000 drawings of 48 object classes
made by children between the ages of 2 and 10, allowing for
investigations into changes in the structure of visual concepts
across development. These datasets have been instrumental
in galvanizing progress towards understanding how humans
flexibly deploy their visual knowledge to create visual rep-
resentations that abstract and distill from their real-world
counterparts, yet nevertheless often suffice for effective com-
munication (Hawkins et al., 2023).

While these prior approaches have laid critical theoretical
and methodological groundwork, they are nevertheless lim-
ited in several ways. First, despite the largest of these datasets
being on the scale of several million individual drawings, the
diversity of the object classes in Quick Draw! falls short of
the range of visual concepts represented in modern investi-
gations of visual concepts (Hebart et al., 2023) nor do they
capture the kinds of object categories that align with human
visual experience (Mehrer et al., 2021). Second, it is difficult
to relate findings on drawings of the visual objects in these
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datasets to findings about the same objects more generally
due to the absence of commensurate large-scale data either
on the drawing or real-world image side. A path forward is
to integrate drawing dataset collection efforts within a larger
ecosystem of research findings grounded in shared test items.

Here, we introduce Drawings of THINGS (DoT), a
dataset of over 28,000 drawings of 1854 visual objects that
adopts such an integrative approach. DoT differentiates itself
from prior datasets most saliently along the axis of semantic
diversity. A critical feature of this dataset lies in the variety
of semantic categories represented, leveraging the richness
of THINGS (Hebart et al., 2019, 2023), a database of 26,107
images of 1854 object concepts with psychologically rel-
evant metadata. Importantly, the objects in THINGS were
carefully sampled from an extensive set of concrete nouns
in American English, ensuring a selection that is both broad
and distinctive, while focusing on the most common and eas-
ily identifiable concrete concepts (e.g., dog, sweater, acorn).
Accompanied by extensive metadata and object property rat-
ings (Stoinski et al., 2023; Hebart et al., 2023), THINGS
supports the precise selection of stimuli, conditions, and con-
trol variables. Additionally, the growing number of publicly
available datasets and studies utilizing the THINGS concepts
(Hebart et al., 2023; Grootswagers et al., 2022; Gifford et al.,
2022; Kramer et al., 2023; Mukherjee et al., 2024; Dobs et al.,
2022; Hebartetal., 2020; Benchetrit et al., 2023; Papale et al.,
2025) facilitates comparisons of findings across different dis-
ciplines, methods, and species. As a result, DOT constitutes a
new semantically diverse drawing dataset that supports ask-
ing a multitude of questions about visual knowledge, while
dovetailing with the rich THINGS database ecosystem that
allows us to connect each drawing to corresponding object
photographs, metadata, and neural data.

In addition to the drawings themselves, we also collected
fine-grained human recognizability data on each drawing and
on photographs of the same objects in the THINGS database.
For each drawing, we also collected stroke-order information
that could be used as a proxy for what information is prior-
itized first or last in drawing a given object. This form of

temporal stroke data has been critical in building computa-
tional models of human concept learning (Lake et al., 2015).
We also include data on each sketcher’s demographics, draw-
ing ability, imageability, and educational background. We
demonstrate how this dataset can be used to test hypotheses
about visual semantic knowledge and its relationship to other
aspects of visual cognition.

Lastly, we make available all our data for the commu-
nity to develop their own studies and test a larger array of
hypotheses.

Methods
Experiment 1: Drawing production study

Our first goal was to collect a large-scale dataset of drawings
of the 1854 objects present in the THINGS database. Similar
to recent studies employing drawing-based methods (Yang &
Fan, 2021; Bainbridge et al., 2019; Hawkins et al., 2023; Fan
et al., 2020; Megla et al., 2025; Mukherjee et al., 2024), we
used Prolific, an online crowdsourcing platform, to collect
multiple drawings of each of the THINGS objects.

Participants

A total of 1316 participants were recruited on the online
experimental platform Prolific. Participants were allowed to
complete multiple sessions contingent on maintaining sat-
isfactory ratings. We excluded data from two participants
due to technical errors in data collection, leaving a sample
size of 1314 participants (735 male, 511 female, 68 other/did
not wish to say !; Mg0= 37.04). All participants provided
informed consent in accordance with the University of Cali-

1 Of the 1314 participants in the drawing production study, 50 did not

complete all trials, including the demographic information trial. Our
gender and age breakdowns do not include data from these participants.
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fornia San Diego Institutional Review Board (IRB) and were
compensated at $15/hour.

Procedure

The experiment was designed using jsPsych version 7 (De
Leeuw, 2015) using a variant of its sketchpad plugin. On
each trial of the experiment, participants were presented with
a blank 550px x 550px canvas surrounded by a black bor-
der of size 2px and an object word above the canvas. Object
words were obtained from the names of the 1854 objects
contained within the THINGS database, which capture most
concrete nameable objects in human experience (e.g., apple,
chinchilla, laptop). In cases where the label was ambigu-
ous (such as ‘bat’ the animal or ‘bat’ the sporting good),
additional disambiguating text, obtained from the THINGS+
dataset (Stoinski et al., 2023), was presented in parentheses
(e.g., bat (animal)). We appended such disambiguating text
to 204 out of the 1854 concepts. The participants’ task was
to use their touch pad, mouse, or any other cursor device
to make a drawing of the prompted object such that a naive
viewer would be able to guess the object’s label from look-
ing at the drawing (Fig. 1A). Participants could make their
drawings only in a single color (black) and were given the
option to undo their most recent stroke, redo the stroke in
case they accidentally undid an action, and also to clear the
entire canvas if they wanted to restart their drawing. The
undo, redo, and clear actions were implemented as buttons
near the bottom of the canvas. We only allowed participants
to participate through a desktop or laptop computer, asking
them to retry if they logged into our task using a phone or
tablet. Participants were free to spend as much time on each
drawing as they wanted and had to at least make one stroke to
be allowed to proceed to the next trial. There was a button to
‘submit’ the drawing and continue on to the next trial when
they were done with each drawing. In addition to saving the
image of the drawings made by participants, we also saved
the order of strokes made by participants (Fig. 2). After each
drawing trial, participants were asked whether they knew
what the prompted object looked like in real life, which they
could answer with either ‘yes’ or 'no’. This was to flag poten-
tial low-quality drawings that were a result of the sketcher
not being familiar with the queried object. Each participant
completed 24 drawing trials, with the median time taken
to complete the experiment being 21 min. Before complet-
ing the experiment, participants completed a questionnaire
where they reported their demographic information, includ-
ing age, gender, ethnicity, state of residence (optional), and
level of education. They were also asked to answer seven-
point Likert scale questions on self-reported drawing skill
and mental imagery capabilities ("When you try to form a
mental picture, it is usually:", where the endpoints of the
scale were ‘no image’ and ‘very clear’).

@ Springer

Filtering for high-quality drawings

We collected a total of 29,876 drawings with an average of
16.2 drawings per THINGS object (SD = 4.69), with the
smallest number of drawings collected for an object being
12 and the largest being 41. In order to filter out drawings
that were inappropriate, not relevant to the prompted object
label, or blank canvases, we had a team of six internal anno-
tators rate the validity of each drawing given the prompted
object. Not all annotators saw each drawing but each drawing
was shown to at least three annotators. The annotators were
asked to indicate if a given drawing was ‘valid’ or ‘invalid’
according to the following specific criteria — invalid draw-
ings were those that consisted of (1) illegible scribbles, (2)
text written out in the form of a drawing, or (3) offensive
imagery. Since there is some degree of subjectivity to these
criteria, we collected at least three validation ratings for each
of the 29,876 drawings. We chose to only include drawings
in our final dataset that were rated as ‘valid’ by the majority
of the annotators, i.e., at least two out of three. This cri-
terion allowed for screening out of obviously bad drawings
while remaining conservative in terms of data exclusion. This
led us to remove 1249 drawings (4.18% of the total num-
ber of drawings), which yielded a final dataset of 28,627
drawings.

Experiment 2: Drawing recognition study

After collecting the dataset of drawings, we ran a second
study with the aim of characterizing patterns of recognition
behavior for these drawings. To this end, we conducted an
experiment where a new cohort of participants had to provide
object labels for each of the drawings in our dataset.

Participants

A total 1578 participants were recruited on Prolific to
complete the drawing recognition study. Participants were
allowed to complete multiple sessions contingent on main-
taining satisfactory ratings. Thirteen participants either did
not complete even a single recognition trial or faced technical
difficulties during the experiment. We excluded an additional
eight participants who failed to provide reasonable labels
for a catch trial embedded within normal recognition trials,
which depicted a drawing of a cat. Our final sample consisted
of 1557 participants (744 male, 674 female, 32 other, six did
not wish to say 2; Mgge= 39.96). All participants provided
informed consent in accordance with the UC San Diego and

2 Ofthe 1557 participants in the recognition study, 101 did not complete
all trials, including the demographic information trial. Our gender and
age breakdowns do not include data from these participants.
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Fig.2 Sample drawings from DoT rendered stroke-by-stroke. Darker strokes indicate those made later during the drawing process

University of Chicago IRBs. Participants were compensated
at $8/hour.

Stimuli

The stimuli were the 28,627 drawings in our dataset that
remained after exclusion of poor-quality drawings. The set of
all possible labels was each of the THINGS 1854 object labels
(with the appropriate disambiguating text in parentheses for
the relevant objects).

Procedure

Participants were tasked with providing semantic labels (i.e.,
object names) for the drawings. The labels they could pro-
vide were restricted to objects in the THINGS database. On
each trial of the experiment, participants were provided with
a random drawing from Experiment 1 and text above the
drawing asking ‘What is this object?’. There was an empty
text box below the drawing where the participant could type
an answer. As the participant typed, several candidate objects
would be populated in a drop-down menu based on partial

@ Springer
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string matches to the THINGS objects. The participant had
to select one of the possible drop-down labels and could not
enter a label that was not in the set (Fig. 1B). Given that
some drawings could be ambiguous or may evoke more than
one semantic label, we allowed participants to provide up to
five labels, although only one label was required to progress
to the next trial. Before starting the experiment, participants
completed a practice trial to familiarize themselves with the
interface. All participants were shown the same researcher-
made drawing of a cat during this practice trial. While we
did not exclude any participants based on whether they cor-
rectly labeled this practice trial, 95.89% of the participants
provided the exact label ‘cat’, and 99.73% of participants
provided a label that was either ‘cat’, ‘kitten’, ‘fox’, or ‘dog’
showing that our interface was intuitive to use and partici-
pants generally understood the task.

The same drawing was presented once more during the
actual experimental trials as a ‘catch trial’. Only 8 par-
ticipants (0.5%) failed to pass this check. To begin the
experiment, participants had to correctly answer three com-
prehension check questions that tested that they knew not
to enter multiple labels of the same object, not to leave the
response text box empty, and to answer with their best guess
when they weren’t sure of the object depicted in the drawing.
Each participant completed 64 recognition trials where they
were never shown more than one drawing of each THINGS
object. Before completing the experiment, participants com-
pleted a questionnaire where they reported their demographic
information, including age, gender, ethnicity, and highest
level of education. They also reported their mental imagery
using the scale described in Experiment 1.

Drawings from each object were labeled by an average
of 55.67 participants, with each individual drawing being
labeled by an average of 3.63 participants. On average, par-
ticipants provided 1.52 (SD = 0.57) labels per drawing with
a maximum of five labels provided for a single drawing. Par-
ticipants spent an average of 18.01 s per recognition trial
(SD=2.65s).

Experiment 3: Image recognition study

We additionally collected a dataset of recognizability scores
for all photographs included in the THINGS database (Hebart
et al., 2019; Stoinski et al., 2023). Similar to the drawing
recognition study, participants were instructed to select the
most fitting label for the object depicted in each photograph
from a drop-down menu containing the 1854 THINGS object
labels. The goal of this experiment was to provide comple-
mentary recognition data on the same visual objects when
depicted using photographs as opposed to line drawings.

@ Springer

Participants

A total of 13,158 participants were recruited via the crowd-
sourcing platform Amazon Mechanical Turk. All participants
resided in the US and provided informed consent in compli-
ance with the Ethics Committee of the Medical Faculty of
Leipzig University, Germany. Participants received a small
compensation for each completed HIT and could choose to
participate in as many HITs as they wished.

To ensure data quality, several exclusion criteria were
applied during and after data collection. Participants were
flagged as potentially non-compliant if they completed five
trials in under 1100 ms, or all ten trials in under 1300 ms.
Additionally, participants were flagged as non-compliant if,
in five or more trials, they selected one of the top drop-down
options after typing only a single letter in the drop-down
menu search bar. Individuals flagged as potentially non-
compliant on two occasions were prevented from further
participation using a custom function embedded in the exper-
imental script. Each HIT included one easily recognizable
catch image. After data collection, participants were flagged
as non-compliant if they mislabeled the catch images in 50%
or more of their HITs. Workers flagged as non-compliant had
all their data excluded from the analysis. Following these
exclusions, 8094 individuals remained (4607 female, 3395
male, 92 diverse), ranging in age from 18 to 98 years (M =
37.81, SD =11.25). On average, participants completed 6.10
HITs (SD =58.94).

Stimuli

Participants provided labels for all 26,107 images in the
THINGS dataset (Hebart et al., 2019), along with the 1854
public domain images provided in THINGS+ (Stoinski et
al., 2023).

Procedure

A single image recognizability experiment (human intel-
ligence task, HIT) consisted of ten trials. In each trial,
participants were presented with an image and asked to select
the most appropriate label for the depicted object from a
drop-down menu listing the 1854 THINGS objects (Hebart
et al., 2019). Similar to the drawing recognition experiment,
the labeling interface allowed participants to begin typing
with the dropdown auto-suggesting labels based on partial
matches. For objects with ambiguous meanings, additional
context was provided in parentheses. Here, participants pro-
vided only a single label per image.
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Each HIT included one easily nameable catch image
in a randomly assigned trial, assuming that participants
who failed to label this image likely were noncompliant in
completing the experiment. As catch images, we selected
2796 unique THINGS images that were correctly named in
100% of cases during the free label generation task of the
THINGS+ nameability experiment (Stoinski et al., 2023).
Initially, each image was sampled 20 times. After exclud-
ing trials from noncompliant participants, we conducted a
follow-up collection to fill up the number of samples per
image back up to 20. As every HIT had to include one catch
image, some catch images were sampled slightly more often.
After data exclusion, each individual image had been labeled
between 5 and 23 times (M = 14.70, SD = 2.40). Averaged
across the 13 or more image examples per object, each object
was labeled between 165 and 532 times (M =221.71, SD =
41.44).

Results

The final DoT dataset consists of 28,627 drawings belonging
to 1854 object classes. Each drawing is associated with a
550px x 550px raster image representation of the drawing,
a history of strokes used to make the drawing, which can be
used to re-render the drawing stroke-by-stroke, the amount of
time the participants took to complete the drawing, the mean
recognizability of that drawing 3, and whether the sketcher
was familiar with the object or not. We additionally provide
embeddings for each drawing obtained from SigL.IP (Zhai et
al., 2023), a state-of-the-art multimodal transformer model
as described in the following section.

Drawings in DoT are visually diverse while
selectively evoking their true semantic categories

Computer vision models trained for object recognition have
been shown to be good models of human vision across a vari-
ety of behavioral and neural metrics (Yamins et al., 2014;
Cadieu et al., 2014; Mahner et al., 2025). Recent years have
seen the emergence of alternative self-supervised training
objectives such as visual contrastive learning (Konkle &
Alvarez, 2022; Zhuang et al., 2021; Chen et al., 2020) and
image-language contrastive learning (Radford et al., 2021),
and transformer-based vision models are competitive with
and even surpass convolutional neural networks at aligning
with human behavior despite sharing fewer inductive biases
with primate vision (Conwell et al., 2024). We leveraged
such a transformer-based multimodal model SigL.IP (Zhai
et al., 2023), which was trained on web-scale corpora of

3 We report recognizability both based on the first guess (top-1 guess) or
the best guess amongst all labels entered by a participant (top-k guess).

images and text data, and computed embeddings for each
of the drawing images to test the diversity of their represen-
tations. For simplicity, below, we report results on drawings
belonging to the 27 superordinate ‘core’ categories identi-
fied by Hebart et al. (2019) (e.g., food, furniture, clothing).
We first selected drawings of objects that belonged to the
27 categories. This resulted in a set of 13,802 drawings that
we show in Fig. 3A. Each point corresponds to the position
of a single object obtained by averaging the SigLIP feature
vectors for all drawings of that object and then projecting the
high-dimensional vector into a two-dimensional space using
the t-stochastic neighbor embedding algorithm. The mean
drawing-to-drawing similarity expressed by SigLIP reveals
that drawings of some objects appear highly clustered (e.g.,
animals, birds, clothing, and weapons) while drawings of
other categories appear more dispersed (e.g., tools and food).
Overall, it does appear that DoT qualitatively spans a reason-
ably large degree of visual variety while organizing objects
in a semantically coherent manner.

To quantify this semantic coherence and measure the
extent to which the drawings serve as good candidates for the
core categories they belong to (without looking at the human
recognition data), we once again used SigLIP to estimate the
extent to which the visual embeddings of drawings belong-
ing to each category aligned with the text embeddings for
its category label. We conducted these analyses at the level
of the core categories to align closely with the analyses in
Hebart et al. (2019), where the authors showed that semantic
embeddings of the THINGS objects showed category selec-
tivity for the core categories. For each drawing, we computed
the dot product between its SigLIP image embedding and the
SigLIP text embedding of each of the 27 core categories. This
allowed us to compute the difference between image-to-label
similarities between each drawing and its target category and
the mean similarities to the remaining 26 categories. If this
difference is positive, it constitutes a measure of how selec-
tively that drawing evoked the target core concept relative to
the others. We conducted a permutation test where we scram-
bled the category labels and repeated the procedure 1000
times to estimate statistical significance. Figure 3B shows
the cosine similarities between the average image embedding
for each category (averaged over all drawings belonging to
that category) and the text embeddings for each of the cat-
egory labels. Similarities were z-scored to put them on the
same scale. We found that, for the majority of categories,
their drawings were significantly selective for the true label
except for ‘part of car’ (p < 0.001 for 26 out of 27 categories
after Bonferroni corrections for multiple comparisons).

A key benefit of organizing the present drawing dataset
around the THINGS database is that it allows for comparing
the visual information conveyed in object drawings to natu-
ralistic images of the same objects. To examine if the visual
features underlying drawings and images are reliably simi-
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larity between the mean SigL.IP image embeddings of drawings from
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the 27 core categories with each of the text embeddings for the 27
core category labels. C Similarity between image and drawing SigLIP
embeddings when the images and drawings are from different object
categories (gray) and from the same object category (light blue)
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lar, we extracted SigLIP features from the 26,107 naturalistic
images from the THINGS database (Hebart et al., 2019).
Next, we computed average object embeddings using both
the image SigLIP features and the drawing SigLIP features
we previously extracted. Using these averaged embeddings,
we computed a 1854 x 1854 cosine similarity matrix rep-
resenting image-to-drawing object similarities. To quantify
if images and drawings of the same category (e.g., apple
(drawing) vs. apple (image)) were reliably more similar than
mismatched images and drawings (e.g., apple (drawing) vs.
radio (image)), we computed the average of the diagonal
of this similarity matrix ( M = 0.67, SD = 0.05; light blue
bar in Fig. 3 C) and compared it to the average of the oft-
diagonal entries (gray bar; M =-0.07, S D =0.05). To account
for the fact that some objects are inherently similar to other
objects visually, we corrected the off-diagonal entries of the
matrix by subtracting from them the off-diagonal values from
an image-to-image similarity matrix. Overall, the ‘within-
category’ image-sketch embedding pairs were more similar
than the ‘between-category’ pairs (p < 0.001%), which sug-
gests that drawings of objects visually evoke their target
object more than other objects.

Thus, using machine vision metrics, we show that DoT
exhibits a high degree of category selectivity, thus indicating
that the drawings visually evoke the core categories they are
made to evoke. For the category that didn’t show high selec-
tivity for its true labels (part of car), this is perhaps expected
given that many parts of cars were closer to the label ‘vehicle’
relative to the true label. In subsequent sections, we inves-
tigate to what extent this selectivity holds true for human
observers and whether they can discern semantic structure in
drawings at even finer-grained levels of analysis.

Object drawings in DoT vary in recognizability

Having established that DoT is visually diverse and that indi-
vidual drawings broadly adhere to the semantic categories of
the objects they depict, we turned our attention to investi-
gating the degree to which human observers could recognize
the semantic information that sketchers had encoded in their
drawings. A representative measure of the semantic infor-
mation within a drawing is the object label assigned to it by
participants in our drawing recognition study (Experiment 2).
Thus, we began by measuring how often participant-provided
labels were exact matches to the true label for each drawing.
We compared the object-level recognizability scores derived
from drawings to recognizability scores derived from pho-
tographs of the same objects (Experiment 3) in order to

4 This p value was derived using a permutation test where the image-
to-drawing similarity matrix was shuffled 1000 times to obtain a null
distribution of the difference between the within-category and between-
category means.

characterize the extent to which drawings of objects were
more or less efficient at conveying semantic information rel-
ative to real-world exemplars.

In order to measure how often the object label inferred
by an observer matched the label provided to the sketcher
during the production task, we first computed the proportion
of guessed labels that were an exact match to the label shown
to the sketcher of each drawing. We measured this at two
levels — (1) by testing if the first label provided by each
participant in the recognition experiment matched the true
label (top-1 accuracy) and (2) by testing whether any of the
labels provided by each participant matched the true label
(top-k accuracy). For the image recognition experiment, we
computed an accuracy metric where we allowed homonyms
of the correct label to also be considered ‘correct’, assuming
that they were likely selected by mistake; for example, if
‘button (clothes)’ was chosen instead of the intended label
‘button (device)’. We report results using the latter score.

We found a high degree of variability among the recog-
nizability of drawings of objects, with the top-1 accuracy
spanning the entire range of possible values (M=21.79%;
SD=22.84%; max =96.15%, min = 0%). We observed a sim-
ilar trend for top-k accuracy with an expected slight increase
in accuracy (M=26.50%; S D=24.39%; max=100%, min =
0). Moving forward, when we refer to recognizability for
drawings, we are generally referring to the top-k metric
unless otherwise specified. While drawings of objects like
‘ladder’, ‘snowman’, and ‘cactus’ were almost always recog-
nized and labeled correctly, others like those of ‘mongoose’,
‘mint’, and ‘moccasin’ failed to ever elicit the correct label
(Fig. 5).

Sketchers’ self-reported drawing skills and mental
imagery influences their drawings’ recognizability

Since sketchers self-reported their familiarity with each
prompted object label during the drawing trials, we calcu-
lated the mean object recognizability separately for trials
where they recognized the label and for those where they
did not. Of the 1854 objects used in DoT, 1300 objects had
drawings that were judged to be both familiar and unfamiliar
atleast once with the remaining 554 objects always judged as
familiar. For the set of 1300 objects, we found that, on aver-
age, drawings of objects where the sketcher was familiar with
the object label were more recognizable (M =22.09%, SD =
21.99%) than drawings of objects where the sketcher was not
familiar with the object label (M = 11.49%, SD = 22.98%)
(#(1,853) = 17.69, p < 0.001). Thus, perhaps unsurpris-
ingly, familiarity with the prompted object led sketchers to
produce more recognizable drawings. The fact that recog-
nizability for drawings for the ‘unfamiliar’ group was not
0 indicates that some sketchers may have either misunder-
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stood what the question was asking or that even not knowing
what the object looks like in ‘real life’ did not preclude them
from possessing the requisite knowledge to make a drawing
that nevertheless conveyed the visual concept. More gener-
ally, the average recognizability of the drawings made by a
given sketcher constitutes a measure of their drawing abil-
ity. To investigate the distribution of drawing abilities, we
computed sketcher-specific mean recognizability scores by
averaging over the recognizability scores for all the draw-
ings that they produced. The distribution of scores is shown
in Fig. 4 B. While there was variability in participants’ ability
to convey the target object using drawings (SD = 13.85%),
on average a sketcher made drawings that were recognizable
26.99% of the time, much higher than chance (1/1854) with
70 out of 1314 (5.32 %) sketchers having average recogniz-
ability scores over 50% and 23 sketchers (1.75%) having an
average recognizability lower than chance.

To test whether a person’s drawing skill was predictive
of their drawings’ recognizability, we fit a linear regression
model predicting the average recognizability of sketchers’
drawings from their self-reported drawing skill ratings. We
found a small effect of self-reported drawing skill on draw-
ing recognizability (8 = 0.02, SE = 0.002, p < 0.001;
model R? = 0.03), indicating that people are generally well
calibrated in assessing their drawing ability and how rec-
ognizable their drawings will be. A similar analysis of the
relationship between people’s self-reported mental imagery
ratings and drawing recognizability did not reveal a sig-
nificant relationship (8 = 0.003, SE = 0.004, p = 0.43),
suggesting that one’s subjective perception of their mental
imagery vividness was not a reliable predictor of how recog-
nizable their drawings would be.

Recognizability of object drawings is correlated
with recognizability of object photographs

In order to evaluate whether the low recognizability scores
could be attributed to the fact the drawings were made by
non-expert artists and simply provided insufficient visual
information to inform a correct guess, we compared the rec-
ognizability of each object as measured using drawings with
scores for the same objects when assessed using images.
Overall, recognition accuracy for images of objects (M =
52.65%, SD= 24.41% ) was higher than recognition accu-
racy for drawings of objects (M = 26.50%, SD= 24.39%)
(z(1,853)=39.49, p < 0.001). However, since there was
comparable variance in recognizability for both domains, the
key question was whether the objects that had low recogniz-
ability scores for drawings were the same ones that had low
recognizability scores for photographs. To test this, we first
estimated a noise ceiling for how reliable the rank-ordering of
object recognizability was. This was done by first generating
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two samples of the image recognizability data by sampling
20 recognition trials for each object with replacement and
computing Kendall’s 7 between the rank ordering of objects
in terms of their mean recognizability scores. This proce-
dure was repeated 1,000 times using different splits of the
data to estimate a mean Kendall’s (M =0.89, SD =0.002).
This constitutes a reliability measure of the rank ordering of
objects based on photograph recognizability and the best that
we can expect for the rank ordering of object recognizabil-
ity between drawings and photographs. Using this measure,
we next computed a ‘noise-corrected’ rank-order correlation
between objects’ drawing recognizability scores and image
recognizability scores. Generally, we found that objects that
were difficult to recognize as drawings were also difficult to
recognize in photographs (corrected Kendall’s (1, 853) =
0.42, p < 0.001) (Fig. 5 A).

However, there were several cases that diverged from this
general trend. The points above the identity line in Fig. 5 A
correspond to such objects that were more easily recognized
as drawings than as photographs. To quantify the degree to
which objects were easier to recognize as drawings relative
toimages, we computed a recognizability difference score by
subtracting the average recognizability score for images of
an object from the recognizability score for drawings of that
object (recognizabilityqrawing — recognizabilitypporo).
Objects that had a positive score for this metric were those
that were easier to recognize as drawings relative to pho-
tographs.

Objects such as ‘ticktacktoe’ (0.48, 95% CI = [0.03 —
0.931%), ‘reindeer’ (0.44,95% CI =[-0.01, 0.90]), ‘palm tree’
(0.44,95% CI =[-0.01, 0.90]), and ‘popsicle’ (0.43, 95% CI
= [-0.02, 0.89]) were among the objects that had the high-
est drawing — image recognizability scores. Overall, 211
of the 1854 (11.38%) objects were more easily recognized
as drawings relative to photographs on average. At the same
time several objects were harder to recognize when rendered
as drawings as opposed to photographs (e.g., ‘chocolate’ (-
0.89,95% CI=[-1.34,-0.44]), ‘tiger’ (-0.68,95% CI=[-1.13,
-0.23]), and ‘frog’(-0.56, 95% CI = [-1.01, -0.11])).

Thus, even when considering all guesses that the partici-
pants provided for each drawing, we found a high degree of
variability in terms of how easily object drawings were recog-
nized. We additionally found that, while the recognizability
of real-world instances of objects is predictive of drawing
recognizability, there exist objects that are more efficiently com-
municated using drawings over photographs than others. We

> Confidence Intervals were computed using the standard deviation
of the difference scores across concepts. This is because difference
scores for individual objects were derived by computing the difference
of recognizability scores between drawings and images and thus had no
variance measure.
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next considered whether the incorrect labels might also con-
tain signatures of people’s visual knowledge of the queried
objects.

Drawings vary in visual complexity

The earliest of standardized drawing datasets collected and
used in the psychological sciences included, among other
metadata, ratings on visual complexity (Snodgrass et al.,
1980). The motivation was that the visual complexity of a
depiction could impact cognitive processing, including but
not limited to naming latencies, recognizability, and memo-
rability. Recent years have seen these ideas corroborated to
various degrees with the visual complexity of visual displays
being linked to how engaging they are (Sun & Firestone,
2021), how easily they are recalled (Borkin et al., 2015), and
their affective associations (Madan et al., 2018).
Acrecurring issue has been how complexity should be oper-
ationalized and measured. Previous approaches have used
explicit human ratings (Snodgrass et al., 1980; Madan et al.,
2018; Olivia et al., 2004; Heaps & Handel, 1999; Feng et al.,
2022), various instantiations of description lengths (Lewis &
Frank, 2016; Sun & Firestone, 2022), and automatic algorith-
mic or machine-driven processes (Madan et al., 2018; Sun &
Firestone, 2022; Feng et al., 2022; Shen et al., 2024; Wilder
et al., 2016). Given the scale of DoT, we sought to use the
third approach to annotate each drawing in the dataset with
a visual complexity score. Specifically, we used the ICNet
model proposed by Feng et al. (2022). This model consists of
a two-stream convolutional neural network architecture with
a specialized attention module that allows the model to take
into account low-level detailed features and the overall spa-
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ability as a function of the mean similarity between guessed labels and
the true labels, averaged over drawings for each object. C Drawing
recognizability as a function of label diversity

tial layout of an image to produce both a visual complexity
score and a saliency map over the input image, highlighting
the points of maximum complexity (Fig. 6C). We chose this
method due to its ability to outperform a range of compa-
rable computer vision methods for estimating human visual
complexity ratings on a variety of image datasets. Using this
model, we estimated complexity scores and saliency maps
for each drawing in Do'T.

We found that the drawings in DoT varied in their overall
visual complexity (M =0.11, SD =0.04; min. =0.03, max. =
0.35; Fig. 6B). Further, we found that, on average, drawings
of different categories showed systematic variation in visual
complexity. Figure 6A shows the average complexity scores
for each of the 27 core THINGS categories. The category
‘vehicles’ showed the highest degree of visual complexity
(M =0.13, SD =0.04), ‘fruits’ showed the least complexity
(M =0.09, SD = 0.03), and categories like ‘toys’ showed
an intermediate level of complexity (M =0.10, SD = 0.04).
To show that object category influences the drawing’s visual
complexity at a more granular level, we fit a linear regression
model predicting drawings’ complexity scores with a cate-
gorical predictor for object category. Compared to a reduced
model that did not include a predictor for object category, we
found that the full model explained significantly more vari-
ance (F (1853, 101266) =29.79, p < 0.001), indicating that
object categories are generally important for determining the
complexity of the resulting drawing.

Lastly, we observed a weak but significant positive corre-
lation between visual complexity and drawing recognizabil-
ity (r(1852) = 0.07, p < 0.005), suggesting that the strokes
that induce greater visual complexity might also help support
the recognizability of a drawing, albeit marginally so.
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Diversity of guessed labels predicts lower drawing
recognizability

The previous section established that there was variability
in the degree to which drawings of objects were accurately
labeled. We measured whether this diversity in labels gener-
ated by participants for drawings of objects was predictive
of that object’s recognizability. The rationale was that to the
extent that label diversity does not predict recognizability,
this would suggest that some drawings systematically con-
vey the wrong object. Alternatively, if greater label diversity
was predictive of lower recognizability, then drawings might
be evoking many different objects in the eyes of an observer
(e.g., drawings of dogs, a four-legged animal, might be

more complex

medium, and high complexity drawings, with complexity scores and
saliency maps derived from ICNet (Feng et al., 2022)

labeled as other four-legged mammals such as cows, horses,
zebras, etc.).

For each drawing, we operationalized the label diver-
sity using Simpson’s diversity index (SDI) (Simpson, 1949).
Concretely, the SDI for each drawing was given by —
spr =1 Ziiti=l

N(N —1)
where N refers to the total number of labels provided for
the sketch across participants, including the optional 2nd to
Sth guesses, and n; refers to the number of guesses made for
the ith object. The more dispersed the guesses for an object
are across all the possible labels (i.e., the more participants
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disagree on what is depicted in the drawing), the closer the
SDI is to 0. Conversely, the more concentrated the guesses
are around a few labels (i.e., the more participants agree on
what is depicted in the drawing), the closer it is to 1. In
general, we found that guesses tended to be concentrated
around a few labels (SDI M =0.88, S D=0.09), but that there
was still variability across objects (max SDI = 0.99 ; min
SDI =0.38). We found a strong negative correlation between
an object’s SDI and its recognizability (Pearson’s r (1, 852)
=-0.80, p < 0.001) (Fig. 5 C). This supports the notion
that when observers converge on a single label for a given
drawing, it is often the correct label that was shown to the
sketcher during the production task. However, it leaves open
the question of why drawings with high label diversity exist.

For cases where observers are generating multiple labels
for drawings of a given object and still getting them ‘wrong’,
there are two broad possibilities — (1) the drawing lacked the
visual information to allow an observer to correctly identify
the intended object and thus they responded randomly, or (2)
the drawing did convey enough information for the observer
to recognize it, but they failed to use the appropriate label
given the semantic diversity of 1854 objects in THINGS,
many of which are semantic ‘neighbors’ (e.g., kitten and cat).
In order to better adjudicate between these two possibilities,
in the following section, we looked beyond exact-match met-
rics to a semantic matching approach where we measured
whether guessers produced labels that were in the correct
‘semantic neighborhood’ of the true labels.

Label guesses semantically approximate the true
label

In order to establish a graded metric for how similar dif-
ferent objects were, we leveraged semantic embeddings for
each of the 1854 object categories collected by Hebart et
al. (2023). These embeddings position each of the THINGS
objects in a common 66-dimensional space, where the inter-
item vector distance reflects the item-to-item similarity as
assessed using 4.6 million human triplet odd-one-out judg-
ments (Zheng et al., 2019; Stoinski et al., 2023; Hebart et
al., 2023). Since these embeddings were computed based on
similarities perceived between photographs of the THINGS
objects as opposed to drawings, it was first important to
validate the generalizability of these embeddings for this par-
ticular stimuli class of drawings. In order to do so, we tested
whether the similarity between the true labels for drawings
of a given object and observers’ guesses for drawings of that
object in embedding space was predictive of the likelihood
of that object being labeled correctly.

For each drawing, we computed how similar a partici-
pant’s guess was to the true label by computing the cosine
similarity between semantic embeddings of the guess and
true label. In cases where there were multiple guesses, we
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adopted two strategies. First, we computed the similarity
between the true label and the mean embedding of the
guessed labels. Overall, we found that an object’s mean guess
similarity, that is, how similar guesses were to the true label,
was predictive of its recognizability (Pearson’s r(1852)=
0.71, p < 0.001) (Fig. 5 (B)). This approach would penalize
a participant if one of the multiple guesses was semantically
distal from the true label. So, as an alternative approach, we
computed the similarity between the embedding of the true
label and the closest guess. We found that this best guess
similarity was slightly more predictive of an object’s recog-
nizability (Pearson’s r(1852) = 0.74, p < 0.001). Thus, the
similarity structure expressed by real-world photographs of
visual objects generalizes and is able to capture how recog-
nizable visually abstract drawings of the same objects are.

Having established that item-wise similarity between
labels and guesses in semantic embedding space is predic-
tive of whether drawings of objects are recognizable, we next
sought to use these semantic embeddings to measure whether
incorrect guesses were nevertheless semantically related to
the true label. Concretely, we used the similarity of incor-
rect label guesses to the target label to derive such a measure
of the object’s semantic neighbor preference (Mukherjee et
al., 2024). In order to compute semantic neighbor preference
(SNP) for a given object’s drawings, we first determine a
rank ordering of the 1853 off -target labels in terms of their
similarity to the true target label (based on their semantic
embeddings). The higher the rank of a given object label, the
closer a neighbor it s to the true object label for that drawing.
In order for a drawing to have high SNP, the rank of all its off-
target labels should be reasonably high (that is, they should
be close to 1). We next computed the cumulative proportion
of off-target labels as a function of their rank. A drawing that
elicits labels neighboring the true label will have most of its
assigned labels ranked highly (i.e., lower numerical ranks),
causing the cumulative proportion to rise steeply toward 1.
In contrast, if many assigned labels are semantically dis-
tant, their ranks will be lower (i.e., higher numerical values),
leading to a more gradual increase. This rate of increase is
captured by the area under the curve (AUC) of the cumulative
proportion vs. label rank plot. This AUC value corresponds
to the SNP metric. A SNP value closer to 1 indicates that
guesses were in the same ‘semantic neighborhood’ of the
true label and thus that drawing has a high semantic neighbor
preference. In contrast, an SNP value close to 0.5 would indi-
cate that the off-target labels were indeed random and that
there is no semantically meaningful structure in the incor-
rect guesses. We computed SNP values for each object by
averaging the SNP values for each drawing belonging to the
object.

We generally found that most objects had a high semantic
neighbor preference (M=0.78, S D= 0.12) relative to a uni-
form baseline (0.5), indicating that even when participants
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ognizability. In cases where a participant was incorrect and
provided multiple labels, we considered the label that was
closest to the true label in semantic embedding space as the
guess and computed the rank of that label. Considering the
‘top-k’ guesses led to an overall higher SNP (M=0.81; SD
=0.10; max = 0.99, min = 0.42).

Despite this range, the vast majority of objects (1846 of
1854; except ‘bagpipe’,‘bomb’, ‘boomerang’, ‘chest’ (fur-
niture), ‘chest’ (container), ‘football’, ‘mouse’ (device), and
‘ring’) showed an SNP value greater than 0.5, supporting the
notion that generally objects’ off-target labels were seman-
tically meaningful. We also estimated the SNP using the
photograph recognizability data and found that photographs
yielded even higher SNP scores (M =0.90, SD =0.08; max =
0.99, min = 0.44) (summarized in Fig. 7 A). The SNP scores
between drawings (top-k guesses) and photographs (top-k
guesses) were also moderately correlated (Pearson’s r(1852)
= 0.37, p < 0.001), indicating that observers make simi-
lar patterns of off-target guesses when presented with visual
object concepts in both drawing and photographic form. It is
not surprising that drawings and images are not perfectly cor-
related in terms of SNP, since drawings, by nature, are more
abstract and might thus evoke a broader variety of visual
concepts relative to less abstract images.

For subsequent analyses, we utilized SNP as a measure of
observers’ sensitivity to semantic information in drawings,
asitreflects guesses within the semantic neighborhood of the
correct label. This shift can be understood as a gradual expan-
sion of what qualifies as an “acceptable” label. Moving from
top-1 to top-k accuracy broadens the range of participant
responses considered correct based on predefined criteria.
In contrast, transitioning from accuracy to SNP represents a
shift in the researcher-defined target itself, focusing on the
semantic proximity of responses rather than strict correct-
ness. The series of analyses in the present section raises the
question as to whether cognitively circumscribed properties
of these visual objects may determine the extent to which peo-
ple are able to produce and consequently recognize drawings
of them. To illustrate the potential of DoT as a standardized
dataset that interfaces with existing large-scale resources ger-
mane to the cognitive sciences, in the following section, we
present an analysis of our data that utilizes data from existing
THINGS datasets.

Typicality but not memorability of concepts yield
more recognizable drawings

One overarching goal of the original THINGS dataset was
to provide a representative sample of objects, covering
often-ignored object classes, to help explain the factors that
influence recognition and recall of these objects in naturalis-
tic behavior (Hebart et al., 2019). Here, we explore whether
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two candidate cognitive factors — memorability (Bainbridge,
2019) and typicality (Rosch & Mervis, 1975; Rosch et al.,
1976) — might help explain the pattern of results we find
with respect to drawing and image recognition. Memorabil-
ity is a temporally consistent image-specific property that is
predictive of one’s ability to remember that stimulus. Sen-
sitivity to memorability develops early in childhood (Guo
& Bainbridge, 2024), is not purely determined by low-level
visual features of images (Bainbridge & Rissman, 2018), and
is largely independent from other top-down cognitive pro-
cesses such as cognitive control (Bainbridge, 2020). While
work investigating the underlying features of memorability
on naturalistic images is nascent (Kramer et al., 2023), here
we consider that a visual concept might inherit the mem-
orability of its exemplars, including drawings, leading to
shared memorability between photographs and drawings of
the same object (Han et al., 2023). Since it has been shown
that semantic properties are the most predictive of concept-
level memorability (Kramer et al., 2023), to the extent that
recognizing drawings of objects recruits the same features
used during recognition of real objects (Fan et al., 2018), we
might expect memorability to be a predictor of drawings’
recognizability. Additionally, the specific features that make
a concept memorable might be the same features sketchers
implicitly choose to include in their drawings of the concept.

To test this hypothesis, we correlated each object’s seman-
tic neighbor preference with memorability scores for each of
the THINGS objects collected by Kramer et al. (2023). These
scores were measured in a behavioral experiment utilizing
a continuous recognition memory task, where participants
viewed a stream of images from the THINGS database and
had to indicate with a button press whenever they remem-
bered a repeated image from earlier in the stream. This
resulted in over 1 million human memory ratings. The mem-
orability for each image was then computed as the difference
between the hit rate (HR), the proportion of correct identifi-
cations of repeats, and false-alarm rate (FAR), the proportion
of incorrect detections. This resulted in a corrected recogni-
tion score, which has been shown to be highly similar across
participants — people tended to consistently remember and
forget the same images (Kramer et al., 2023).

We found no significant correlation between memorabil-
ity and semantic neighbor preference (r(1852) = -0.028,
p=0.21). Thus, while memorability may relate to seman-
tic properties of visual concepts as captured by photographs
(Kramer et al., 2023; Hovhannisyan et al., 2021), it does not
account for people’s ability (or inability) to recognize abstract
sketches of these concepts (Fig. 7 B).

Typicality is a salient property of members of a cate-
gory that influences how quickly and easily the members
are named (Rosch & Mervis, 1975; Rosch, 1975), how early
they are acquired in development (Mervis & Pani, 1980), and
how susceptible they are to miscategorization (McCloskey &
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Glucksberg, 1978). While one can judge how typical a given
image is of a category, it is also possible to judge how typical
a given category is of a higher-order superordinate category.
Concepts that are generally more typical might support easier
retrieval and facilitate recognition. We hypothesized that con-
cepts that were more typical might be more easily accessible
and thus might be both easier to draw and easier to recog-
nize in sketches. We leveraged a set of typicality ratings for
the THINGS concepts developed by Stoinski et al. (2023),
and correlated SNP scores with typicality scores. Briefly, the
typicality scores in Stoinski et al. (2023) were collected by
asking participants to rank the typicality of a random subset
of THINGS concepts with respect to a common parent cat-
egory. For example, participants were shown concept words
such as “dog”, “parrot”, “zebra” etc. and asked to rank them
in terms of how representative they were of the category ‘ani-
mal’. The final typicality score for each concept reflected how
often that concept was ranked highly in the subset in which
it was presented. Concepts that were more typical of their
superordinate categories had scores closer to 1 and atypical
concepts were closer to 0. We found a moderately positive
correlation between semantic neighbor preference and typ-
icality (r(1852) = 0.35, p < 0.001), supporting the notion
that drawings of concepts that were more typical tended to
contain visual features that led to semantically meaningful
guesses from observers (Fig. 7 C).

General discussion

Here, we introduced Do'T, a large-scale dataset of over 28,000
drawings of 1854 visual object concepts representative of
the human visual experience inherited from the THINGS
database (Hebart et al., 2019, 2023). We focused on col-
lecting high-quality drawings that nevertheless reflected the
strategies and skill level of the average person without artistic
training. We also collected dense multilabel recognition data
on each drawing, allowing for rich comparisons with exist-
ing metadata on the THINGS concepts. This dataset builds
on the tradition of using drawings to probe visual semantic
knowledge (Fan et al., 2018; Yang & Fan, 2021; Mukherjee
et al., 2019; Sangkloy et al., 2016; Eitz et al., 2012; Bain-
bridge et al., 2019), while addressing a key gap in existing
datasets - semantic diversity. To demonstrate the utility of
our dataset, we characterize the range of behaviors covered
by our production and recognition experiment and present
several analyses relating recognition performance to other
aspects of cognition.

First, we note substantial variability in the recognizability
of concepts when rendered as drawings, with some con-
cepts being consistently identified correctly while others
were never labeled accurately. Highlighting the interoper-
ability of our dataset with sister datasets, we use recognition

data on photographs of the THINGS concepts to show that
there exist cases where the recognizability of drawings of
concepts diverges from that of photographs of the same con-
cepts. Interestingly, there were some concepts (11.38% of
the database) where drawings were better recognized on
average than their photographic counterparts, highlighting
the potential of abstract visual representations to capture
and communicate the diagnostic and essential features of
visual object concepts that may not be as salient in real-
world photographs. In contrast, cases where drawings fail to
communicate the target concept might help delineate the lim-
itations of hand-drawn renderings for communication in the
absence of additional shared context. However, more gener-
ally, concepts that were difficult to recognize as drawings
tended to also be challenging to identify in photographs,
suggesting alignment in the features that make objects rec-
ognizable across different visual representations (Singer et
al., 2023).

Our analysis of label diversity and semantic similarity
provides evidence that even when participants do not pro-
vide the exact correct label for a drawing, their guesses
tend to be semantically related to the true concept. This is
reflected in the high semantic neighbor preference (SNP)
scores observed for most concepts. Thus, even in cases where
drawings fail to perfectly capture the target label, observers
assign labels in a manner that is systematic and in the correct
semantic neighborhood. While concept memorability did not
significantly predict recognition performance, a concept’s
typicality with respect to superordinate categories showed a
moderate positive correlation with semantic neighbor prefer-
ence. This indicates that more typical exemplars of a category
may be easier to both draw and recognize, possibly due to
their more accessible and well-defined features in semantic
memory. Drawings allow for capturing high-fidelity infor-
mation about people’s visual semantic knowledge that is
impossible to capture using traditional measures. The use
of drawings as the medium of production and as stimuli for a
recognition study helped jointly show that people’s ability to
visually communicate is highly varied and that this variation
can potentially be explained as a function of concept-level
properties.

The impetus behind the early standardized drawing
datasets, such as the dataset by Snodgrass et al. (1980), was
in standardizing the set of drawings being used in psycho-
logical experiments, thus allowing for generalizable findings
across different experiments that utilized them. While care-
ful attempts were made to control various aspects of the 280
drawings, including concept selection, drawing realism, and
amount of detail, this approach did not capture how peo-
ple naturally choose to depict these concepts. Large-scale
datasets like QuickDraw solve this issue by collecting behav-
ioral drawing data from people on the web, but run into the
opposite problem of not being systematic in its selection
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of concepts. Here, in DoT, we have attempted to strike a
balance by collecting a large-scale dataset from a standard
crowdworking platform, while keeping our dataset couched
in THINGS, a theoretically motivated and empirically vali-
dated database. Despite these considerable advantages, there
are some limitations to our approach worth noting. It has
been observed that there are marked effects of expertise and
practice on drawing ability and related visuospatial skills
(Chamberlain et al., 2021; Schlegel et al., 2015; Drake et
al., 2024), and variance in expertise might lead to variability
in the recognizability of drawings not explained by visual
semantic knowledge. At the same time, a growing body of
work has emphasized the importance of sequential pattern
generation as a means of both measuring and inducing human
concept learning (Lake et al., 2015; Ellis et al., 2015). DoT
provides a data-rich testbed to evaluate these hypotheses at
scale for a class of stimuli that are inherently semantic. Fur-
ther, recent findings show that the recognizability of even
children’s drawings is explained by semantic development
independent of motor control (Long et al., 2024), signaling
that limitations in participants’ drawing ability do not pre-
clude measurement of their visual semantic knowledge using
drawings. In fact, drawings of the majority of objects in DOT
were recognizable above chance with many ‘incorrect’ labels
resulting from observers assigning semantically neighboring
object labels to drawings, and the majority of sketchers (>
98%) produced drawings that were, on average, recognizable
above chance.

The items in DOT are drawings made under the specific
task instructions of drawing from semantic memory (Kumar,
2021; Quillian, 1968), a task often referred to as simply
‘drawing’. Alternative modes of drawing production under
different task contexts, such as delayed recall (Bainbridge et
al., 2019; Patterson et al., 2007; Bozeat et al., 2003), copying
(Sheppard et al., 2005; Gowen & Miall, 2007; Tchalenko
& Miall, 2009; Perdreau & Cavanagh, 2015), and tracing
(Cohen et al., 2021; Long et al., 2024; Gowen & Miall,
2007) often use the same general approach of allowing par-
ticipants to create drawings but under more stringent goals
and task conditions. These approaches have proven particu-
larly useful in targeted investigations of cognitive processes
in clinical populations. For example, recall-based drawing
tasks have been used to characterize limitations in object
memory in aphantasia (Bainbridge et al., 2021), hemispheric
damage-related visuospatial neglect (Agrell & Dehlin, 1998;
Cantagallo & Della Sala, 1998; Chen & Goedert, 2012), and
knowledge degradation in semantic dementia (Patterson et
al.,2007). While these different tasks confer their own unique
benefits, the open-ended reference-free approach adopted in
the present work allowed sketchers to include the visual fea-
tures they thought most salient or representative of the object
category without additional task demands. While we find a
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muted effect of memorability in predicting drawing recog-
nizability in the present work, the memorability of a specific
reference object in a copying or delayed recall task might be
influential in predicting the recognizability of the resulting
drawing. Future work can seek to explore the effect of dif-
ferent drawing paradigms on the constructs explored in this
work.

Lastly, we note that drawing production is only one of
many tools used to measure and characterize people’s knowl-
edge of object concepts, albeit one that is complementary to
standard psychophysical techniques, such as reaction times
and recognition accuracies in response to naturalistic images
(DiCarlo et al., 2012; Mack & Palmeri, 2015; Delorme et
al., 2010), and neuroimaging measures in response to both
drawings and images (Singer et al., 2023; Ishai et al., 2000).
Drawings raise their own unique measurement problems
regarding how to quantify the visual content within them,
often relying on pre-trained deep neural network feature
extractors (Fan et al., 2018; Singer et al., 2022; Mukherjee et
al., 2024; Baker et al., 2018) or human annotations (Mukher-
jee et al., 2019; Bainbridge et al., 2019; Huey et al., 2023;
Chen & Goedert, 2012; Chamberlain et al., 2015; Sayim &
Wagemans, 2017), potentially making any inferences derived
from drawings more susceptible to noise. Thus, a wide vari-
ety of measures, including drawing, should be brought to
bear when characterizing human visual concept knowledge.

While we present our analyses as a starting point, the DoT
dataset opens up several avenues for future research, includ-
ing further fine-grained investigations into human semantic
memory, the faculties that support visual abstraction, and
the computational principles that support sketch recognition
and generation, potentially leading to better models of how
humans represent and communicate visual concepts. In con-
clusion, drawings of THINGS provides a rich resource
for investigating the structure and organization of visual
semantic knowledge. By combining a diverse set of object
concepts with both production and recognition data, this
dataset enables researchers to ask nuanced questions about
how humans represent, communicate, and interpret visual
information.
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