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Parallel developmental changes in children’s
production and recognition of line drawings
of visual concepts

Bria Long 1 , Judith E. Fan 1,2, Holly Huey 2, Zixian Chai1 &
Michael C. Frank 2

Childhood is marked by the rapid accumulation of knowledge and the prolific
production of drawings. We conducted a systematic study of how children
create and recognize line drawings of visual concepts. We recruited 2-10-year-
olds to draw 48 categories via a kiosk at a children’smuseum, resulting in >37K
drawings. We analyze changes in the category-diagnostic information in these
drawings using vision algorithms and annotations of object parts. We find
developmental gains in children’s inclusion of category-diagnostic informa-
tion that are not reducible to variation in visuomotor control or effort.
Moreover, even unrecognizable drawings contain information about the ani-
macy and size of the category children tried to draw. Using guessing games at
the same kiosk, we find that children improve across childhood at recognizing
each other’s line drawings. This work leverages vision algorithms to char-
acterize developmental changes in children’s drawings and suggests that these
changes reflect refinements in children’s internal representations.

What makes a drawing of a rabbit look like a rabbit and not a dog? As
adults, our visual concepts—our sense of what particular objects look
like—are seamlessly integrated into our visual experience.With a single
glance, incoming patterns of light make contact with our visual con-
cepts, supporting the rapid categorization of a wide variety of inputs,
from real-life exemplars to sparse line drawings1–4. We can also access
our visual concepts in the absence of perceptual input—going beyond
what we have experienced to imagine and create new visual entities5,6.

While these feats of perceiving and creating can feel effortless, the
representations that support them are acquired gradually as children
learn about the visual world7. Infants’ everyday home experiences
scaffold their earliest representations8, but children begin building
visual concepts in earnest as they learn which labels refer to both
depictions and real-life exemplars of categories9. And by their second
birthday, children can learn category labels for novel objects after
exposure to just a few exemplars10,11 and succeed for sparse 3D
representations devoid of color and texture-based cues11.

But children take many years to learn how to appropriately gen-
eralize and discriminate between visual concepts. For example,

childrengradually improve in their ability to accurately group together
categories based on taxonomy versus salient perceptual features (e.g.,
grouping a snake with a lizard vs. a hose)12,13. Further, children’s visual
recognition abilities have a protracted developmental trajectory
throughoutmiddle childhood14,15 as children become steadily better at
discriminating between similar exemplars of scenes, objects, bodies,
and faces16, and increasingly skilled at recognizing objects across
unusual poses or 3D rotations14,17,18. In turn, changes in children’s
recognition abilities are related to changes in how the visual cortex
encodes objects and scenes17,19–21; for example, children’s ability to
discriminate similar faces is correlated with the sensitivity of face-
selective regions to these particular faces22. These changes in chil-
dren’s ability to discriminate exemplars may be driven by children’s
increasing attention to the relationships between object parts and
their overall configuration15,23,24. Together, these findings suggest that
visual concepts are refined throughout early and middle childhood as
children learn how to discriminate between similar categories.

Psychologists have typically probed children’s visual concepts by
asking children to make discrete choices between small samples of
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stimuli that vary along dimensions chosen by an experimenter. While
valuable for testing specific hypotheses, this strategy is also char-
acterized by limits on the amount of information that can be acquired
on any given experimental trial. By contrast, generative tasks such as
drawing production can overcome these limits by enabling the col-
lection of more information about the contents of children’s visual
concepts on every trial. Further, almost all children prolifically pro-
duce drawings of visual concepts from an early age25, and there is
substantial precedent for the examination of children’s drawings to
probe their knowledge about the visual world25–27. Freehand drawing
tasks thus provide a valuable tool for characterizing developmental
changes in visual concepts. Here, we create a large digital dataset of
children’s drawings and leverage innovations in machine learning to
characterize how changes in children’s drawings are related to their
growing understanding of various visual concepts.

Ourworkbuildsona long literature thathas argued that children’s
drawings of objects reflect not only what they can directly observe,
but what they know about these objects [see intellectual realism in ref.
28, 29]. For example, even when drawing from observation, children
tend to include features that are not visible from their vantage point
but are nevertheless diagnostic of category membership (e.g., an
occluded handle on a mug)30,31. Further, direct visual or haptic
experience with novel objects tends to change what information
children draw30. These initial studies have focused on a small number
of visual concepts—especially the humanfigure32—finding that younger
children (4–5 years) tend to include fewer category-diagnostic cues,
such as cues distinguishing an adult from a child, than somewhat older
children (6 years), who tend to enrich their drawings with more diag-
nostic part information33,34. However, the generality of the conclusions
based on this work has been unclear given the narrow range of con-
cepts tested and the lack of genericmethods formeasuring diagnostic
information in drawings. Further, little work has systematically related
children’s ability to include diagnostic visual information in drawings
to their emerging abilities to control and plan their motor
movements35,36.

Yet research in adults does suggest that what we draw is tightly
linked to what we know about objects and how we perceive them. For
example, patients with semantic dementia tend to produce drawings
without distinctive visual features37 or include erroneous features (e.g.,
a duckwith four legs). One recent study found that adults can produce
detailed drawings of scenes after only viewing them for a few
seconds38. Another study found that recognizing an object and pro-
ducing a drawing of an object recruit a shared neural representation in
early visual cortex39. Further, practice producing drawings of objects
can impact perceptual judgments about them. In one study, adults
who repeatedly drew similar objects (i.e., beds vs chairs) were better
able to distinguish them in a categorization task40. Drawing expertise is
also associatedwith enhanced visual encodingof object parts and their
relationships41–44, but not differences in low-level visual processing43–46

or shape tracing skills47.
Building on these traditions, in the current paper we characterize

developmental changes in how children produce and recognize line
drawings as an additional lens into children’s growing understanding
of these visual concepts. We anticipated that children’s ability to pro-
duce and recognize line drawings would continue to develop beyond
the preschool and early elementary school years16,17,20 and that some—
but not all—age-related variation in drawing ability would be due to
improvements in planning and motor control35,36. In particular, as
children learn the visual information most diagnostic of a visual
concept7, this visual knowledge maymanifest in both: (1) an enhanced
ability to produce line drawings that contain category-diagnostic
information and (2) a greater sensitivity to this same visual information
when recognizing line drawings made by other children.

We thus first collected digital drawings of 48 different visual
concepts from a large sample of children spanning a wide age range

(2–10 years), resulting in a corpus containing >37K drawings. To
quantify developmental changes in these drawings, we leveraged
techniques from modern machine learning and computer vision, in
particular the latent feature representations learned by large neural
networks trained on visual discrimination tasks48,49, which have been
shown in prior work to capture meaningful variation in human per-
ceptual judgments about both natural images and drawings40,50. We
use these latent feature representations both to quantify the category-
diagnostic information in each drawing and to analyze the similarity
structure in children’s unrecognizable drawings. We then crowd-
sourced part labels for each stroke in a subset of these drawings to
quantify how the parts children included in their drawings changed
across development. Finally, we administered drawing recognition
tasks to measure how well children of different ages could identify
which visual concept a given drawing was intended to convey.

This study makes a number of contributions relative to the prior
literature. First, we collect, annotate, and share a large sample of
children’s drawings from scribbles to sophisticated sketches, creating
valuable resources for future research. Second, we develop an analytic
approach suitable for exploring these drawings, which yields a number
of intriguing findings around drawing development—including the
presence of semantic information even in children’s unrecognizable
drawings. Finally, we find evidence for the relation between develop-
mental changes in children’s drawing abilities and their growing
understanding of the visual concepts they are drawing. Older children
include more diagnostic visual information and relevant object parts
when producing line drawings, and these gains are not easily
explainable by category exposure frequency or visuomotor develop-
ment. Further, children’s developing ability to recognize drawings is
related to the presence of category-diagnostic information in these
drawings. Together, we provide a set of tools and insights into the
development of drawings and visual representations in childhood,
which we hope will spur future research on this topic.

Results
Examining drawing production
We installed a free-standing kiosk at a children’s science museum (see
Fig. 1a), where children used a touchscreen tablet to produce their
drawings. We included a set of shape-tracing trials in the drawing
production task to measure children’s tracing skills (see Fig. 1b). After
completing these tracing trials, children were verbally prompted to
draw different visual concepts, including both animals and inanimate
objects that are both commonly drawn (e.g., face, cat) and less com-
monly drawn by children (e.g., octopus, piano) (see Methods, Supple-
mentary Fig. 1, Supplementary Fig. 2). After filtering, the dataset
contained 37,770 drawings of 48 categories from N = 8084 children
(average age: 5.33 years old; range: 2–10 years old; see Supplementary
Table 1 for age demographics, Supplementary Table 2 for reported
interference rates).

Measuring category-diagnostic information in sucha largedataset
of children’s drawings poses a major analytical challenge. Until
recently, researchers analyzing even small drawing datasets had to
develop ad hoc criteria for scoring drawings based on their intuitions
about what the distinctive visual features could be (e.g., handles for
mugs)31,32. Fortunately, recent advances in computer vision have made
it possible to measure category-diagnostic information at scale by
leveraging latent feature representations learned by large neural
networks48,49, although at some cost to interpretability, as these
learned features are not guaranteed to map onto nameable object
parts. We thus use two approaches with complementary strengths:
first, we use model classifications to estimate the amount of category-
diagnostic information in each drawing; second, we use crowd-
sourcing to identify which parts children included in their drawings.

Our first approach leverages the latent feature representations
learned by neural network models to derive measures of a drawing’s
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recognizability—how much category-diagnostic information it con-
tains. Specifically, we analyzed the degree to which the visual features
of each drawing could be used to decode the category that children
intended to draw. Activations for each sketch were taken from the
second-to-last layer of VGG-19, a deep convolutional neural network
pre-trained on Imagenet classification48, as prior work has shown that
activations from deeper layers tend to correspond to the visual fea-
tures that enable basic-level recognition (e.g., cat vs. dog) in both
sketches and photographs40. These features were then used to train
logistic-regression classifiers to predict which of the 48 categories
children were asked to draw for sets of held-out drawings (see Meth-
ods), balanced across categories. For every drawing, this procedure
thus yielded: (1) a binary classification score, indicating whether a
given drawing contained the visual features that enabled basic-level
recognition, and (2) a probability score for each of the 48 categories,
capturing the degree to which a given drawing contained the visual
features relevant to that category (Fig. 2a, Fig. 1d). We then validated
these VGG-19 model classifications by using embeddings from a con-
trastive language-image pre-training model (CLIP49), which jointly
trains an image and a text encoder to predict image and text pairings.
While relatively less work has related the embeddings of this model
class to either human behavioral or neural representations51, CLIP
outperforms many models at recognizing visual concepts across dif-
ferent visual formats49.

For our second approach, we crowd-sourced human annotators
to tagevery stroke in a subsampled set ofN = 2160drawingswith a part
label (see Methods). Using these annotations, we analyzed changes in
which parts children drew and howmuch they emphasized those parts
in their drawings. The goal of these analyseswas to provide insight into

which specific elements within children’s drawings change across
development and give rise to the changes in category-diagnostic
information measured using model classifications.

Drawings of visual concepts become more recognizable across
childhood
Children’s drawings steadily increased in recognizability with age, as
measured usingmodel classification performance (Fig. 2b, fixed effect
of age in Table 1, seeMethods; validation using CLIP in Supplementary
Table 3, Supplementary Fig. 3, Supplementary Fig. 4). Features from
deeper layers of VGG-19 were critical to recovering these age-related
changes, suggesting that drawings produced by older vs. younger
children primarily differed in mid- and high-level visual features
(Supplementary Fig. 5). We replicated this finding in a separate con-
trolled experiment inwhich a researcherwas present52, suggesting that
these effects were not an artifact of data collection at the kiosk (fixed
effect of age in Supplementary Table 4, subset of data in ref. 52, Sup-
plementary Fig. 6).

What explains these gradual increases in recognizability? Younger
children may simply have had less practice drawing and are thus less
well-equipped to express what they know, despite a mature under-
standing of these categories. This account predicts that changes in
recognizability should primarily be driven by children’s experience
drawing specific categories and in turn that frequently drawn cate-
gories should show the strongest developmental trends. To test this
possibility, we first asked parents to report how often their child pro-
duces drawings of each category (N = 50parents of children aged 3–10
years, see Methods, Supplementary Fig. 3). We did not find evidence
that drawings of more frequently practiced categories were more
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Fig. 1 | Overviewof tasks and example drawings. aMuseumkioskwhere children
participated, and b examples of the tracing, drawing, and c guessing trials.
d Example drawings from several categories; redder drawings contain more

diagnostic visual information (as assessed by classifier evidence using VGG-19 FC6
features, see Methods).
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recognizable or associated with stronger developmental trends (no
fixed effect of drawing frequency or interaction with age in a gen-
eralized linear mixed-effects model, Table 1). This pattern of results
was robust to the choice of model (Supplementary Table 3) and was
replicated using human recognition scores in the controlled experi-
ment (Supplementary Table 4). Instead, many infrequently drawn
categories (e.g., ice cream) were well-recognized, while some fre-
quently drawn categories (e.g., dog) were more likely to be confused
with similar categories (see Fig. 2c).

Fig. 2c shows these developmental trends broken down by each
category, highlighting wide variability across categories (Supplemen-
tary Fig. 4 for validation using CLIP); some categories were not well-
recognized at all, especially in younger children (Fig. 2c). We next
examined whether other measures of frequency of experience in
children’s daily life might predict this variation—for example, fre-
quency in child-directed speech or all English-language books (Sup-
plementary Table 5). However, we did not find a statistically significant
relationship between these measures of frequency and the recogniz-
ability of children’s drawings.

Visuomotor control explains some changes in recognizability
We anticipated that the recognizability of children’s drawings would
varywith children’s ability to control and plan theirmotormovements.
Children spend countless hours both learning to write and practicing
how to produce different shapes. Children’s engagement could also

reasonably vary as a function of age, with more skilled children
spending more time, ink, or strokes on their drawings. We therefore
measured the amount of effort children put into their drawings, and
estimated children’s visuomotor control via the shape tracing task.
Children traced both a relatively easy shape (a square) as well as a
complex, novel shape that contained both curved and sharp segments
(see Fig. 1b). We then used each participant’s tracings to derive esti-
mates of their visuomotor control. To do so, we obtained ratings of
tracing accuracy from adults for a subset of tracings and then used
these ratings to adapt an image registration algorithm53 to predict
tracing scores for held-out tracings produced by children (see Meth-
ods). Tracing scores produced by the same participant were moder-
ately correlated (r(6754) = 0.60, t = 61.93, P < 0.001, 95% CI = [0.586,
0.617]), despite the irregular shape being harder to trace than the
square and the brevity of this tracing assessment.

If age-related changes in drawing recognizability primarily reflect
changes in visuomotor control35, then accounting for visuomotor
control should explain away the age-related variance we observed.
However, we still found a fixed effect of age after accounting for tra-
cing abilities and effort covariates (Table 1), including the amount of
time children spent drawing, the number of strokes in each drawing,
and the amount of “ink” children used (see Methods); this effect was
robust tomodel choice (validationusingCLIPwithfixedeffect of age in
Supplementary Table 3, examples in Supplementary Fig. 7, multi-
colinearity analysis in Supplementary Table 6). Even though children’s

Table 1 | Modeling children’s visual production behavior

Estimate Std. Error z value Pr(>∣z∣) 2.5% CI 97.5% CI

Intercept −0.690 0.173 −3.979 <0.0001 −1.030 −0.350

Age (in years) 0.251 0.020 12.805 <0.0001 0.212 0.289

Est. drawing frequency −0.062 0.173 −0.356 0.721 −0.402 0.278

Avg. tracing rating 0.267 0.020 13.529 <0.0001 0.229 0.306

Time spent drawing 0.039 0.021 1.868 0.062 −0.002 0.079

Ink used −0.031 0.020 −1.546 0.122 −0.070 0.008

Number of strokes 0.008 0.018 0.477 0.634 −0.026 0.043

Age × Drawing frequency 0.017 0.017 1.042 0.298 −0.015 0.050

Results of a generalized linear mixed-effectmodel predicting the recognizability of each drawing (i.e., binary classification scores) from VGG-19 FC6 classifications, including random intercepts for
each category and participant. All predictors were z-scored prior to analysis such that coefficients are standardized and comparable. All significance tests areWald significance tests based on the
coefficient values; these tests are two-tailed. No adjustments were made for multiple comparisons. See Methods for further model specifications.

Fig. 2 | Analyzing drawing accuracy over development. a Overview of the ana-
lysis strategy for classifying children’s drawings on the basis of VGG model
embeddings.bMeanproportionof drawings recognized as a function of children’s
age; each dot represents the proportion of drawings that were correctly classified
in a given category; the gray chance line represents 1/48 (number of categories in
the dataset). Error bars represent 95% confidence intervals bootstrapped across
the N = 48 categories for a total of N = 22272 drawings in the balanced dataset.
c The y-axis represents the mean log-odds probabilities (i.e., classifier evidence)

assigned to the target category, binned by the age of the child (in years) who
produced the drawing. Error bars represent 95% confidence bootstrapped across
the number ofdrawings included in thebalanceddataset for each age andcategory
(average number of drawings in eachbinN = 51.6, range= 14–102drawings). Colors
correspond to the ages shown on the x-axis of b. Categories on the x-axis are
orderedbyaverage log-oddsprobabilities for each category indescendingorder to
highlight variation. A generalized mixed-effect model fit to recognition data from
each drawing was used to analyze these data; all statistics are detailed in Table 1.
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ability to control andplan theirmotormovements predicts their ability
to produce recognizable drawings, this factor does not fully account
for the observed developmental changes.

Recognizable drawings become more informative across
development
The above results suggest that children gradually improve their ability
to include diagnostic visual information in their drawings. However,
they are also consistent with an account where younger children are
just as able to produce recognizable drawings when they are engaged
with the task, but are less likely to stay on task and thus produce
unrecognizable drawings more often. To tease these two possibilities
apart, we compared how much diagnostic visual information was
contained in drawings that were correctly recognized.

For example, among drawings that were correctly recognized
as clocks, did older children also include visual information that
more clearly set them apart from other similar categories—for
example, watches? We found that for correctly classified drawings
(38.6% of the balanced subset of drawings,N = 8590), the amount of
diagnostic information they contained still increased as a function
of age, as measured by the log-odds probability assigned by the
logistic-regression classifier to the target category (β = 0.111, SE =
0.015, df = 3544.18, t = 7.354, P < 0.001, 95% CI = [0.082, 0.141]; fixed
effect of age in Supplementary Table 7, validation using CLIP in
Supplementary Table 8). Age-related improvements in children’s
abilities to produce recognizable drawings also reflect a gradual
increase in the amount of category-diagnostic information in their
drawings.

Misrecognized drawings still contain semantic information
Even if a child does not know the diagnostic features of giraffes or
rabbits, they likely know that both are animals with four legs. This kind
of coarse semantic information may still be contained in children’s
unrecognizable drawings. Indeed, prior work suggests that basic-level
recognition—for example, recognizing something as a piano—is not a
pre-requisite for inferring semantic information about a depicted
object, such as whether it refers to something alive or its size in the
real-world. Adults can reliably judge the animacy and real-world size of
unrecognizable, textured images by inferring that animals tend to have
high curvature and that larger, inanimate objects tend to have boxier
shape structures54,55 and preschool children appear sensitive to these
cues56.

Following this idea, we reasoned that even young children’s mis-
classified drawings might contain information about the animacy and
real-world size of the category they tried to draw (see Fig. 3a). We thus
analyzed the patterns of drawing misclassifications, examining the
animacy and real-world size of the incorrect category that was
assigned the highest probability for each drawing. We found that
misclassified drawings reliably carried information about the animacy
and real-world size of the category children were trying to draw (see
Fig. 3b, c). Both animacy and real-world object size information was
decodable across all ages (all 95% CIs shown in 3b, c do not include
chance) though we found wide variation across individual categories
(each data point in Fig. 3b, c). More broadly, we observed structure in
the pattern of probabilities assigned by the classifier to the other
categories (see Fig. 3a): for example, unrecognizable drawings of an
octopus were often assigned a high classifier probability for a spider.
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Fig. 3 | Semantic information inmisclassifieddrawings. aClassifier probabilities
for the subset of drawings that were misclassified on the basis of VGG-19 embed-
dings (FC6) (N = 13682misclassified drawings produced by N = 6270 children, with
48 probabilities for each drawing). The y-axis shows the category children were
intending to draw; the x-axis shows all of the categories in the dataset. Lighter
values represent greater classifier probabilities assigned to a given category (see
colorbar). b, c Proportion of misclassified drawings that contained the correct

animacy/object size information of the target category (relative to baseline in the
dataset); each dot represents the proportion of drawings in a given category that
had correct animacy/real-world size information relative to baseline at each age,
respectively. Error bars represent bootstrapped 95% confidence intervals across
b N = 48 categories at each age (N = 13682 drawings total), and c across N = 26
inanimate categories at each age (N = 6772 drawings total).
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Drawings contain more recognizable parts across development
What aspects of these drawings account for this improvement? A
natural possibility is that children gradually learn which object parts to
include and how much to emphasize those parts (e.g., long ears for
rabbits) in their drawings57. We thus collected annotations of the visi-
ble object parts in a subset of N = 2021 drawings, and examined
developmental changes in which parts children prioritized in their
drawings throughout development (Fig. 4).

We found that drawings produced by older vs. younger chil-
dren generally contained more semantic parts (fixed effect of age in
a linear mixed-effect model, β = 0.395, SE = 0.041, df = 2071,
P < 0.001, CI = [0.314, 0.476]); (Fig. 5, Supplementary Fig. 8). For
some concepts, these gains appeared to be specific to single part:

for example, older children were more likely to produce cups with
handles and cars with recognizable wheels. For other concepts,
however, age-related changes were more complex: while most
younger children’s drawings of rabbits included recognizable ears,
many of them were still not recognizable as rabbits. Thus while we
observed clear age-related changes in the part complexity of chil-
dren’s drawings, the mere presence of—or amount of emphasis on—
any particular part may not be sufficient to account for develop-
mental variation in recognizability (see Supplementary Fig. 9);
instead, children are likely also learning how to arrange several
object parts to convey a recognizable exemplar. For example, the
ears on rabbits may need to be more elongated relative to the head
to provide a strong enough cue to category membership.

tiger hat
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bird dog lampairplanesheep boatrabbit
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olds
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Fig. 4 | Annotated drawings. Example drawings from 4–8 year-old children, with part annotations. Each color represents object parts labels agreed upon by human
annotators; gray lines represent strokes with multiple parts, and black lines represent unintelligible strokes.
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Fig. 5 | Changes in object part inclusion and emphasis over development.
Proportion of drawings that included a given object part for each object category
as a function of children’s age (seeMethods), analyzing annotations from N = 1824
drawings where annotators agreed on part labels (see Methods). The size of each

dot reflects the average emphasis (proportionof stroke length relative to the entire
drawing) for each object part within each bin (max plotted part emphasis = 0.5);
the top five most frequent object parts are included for each category excluding
generic “body/head” parts.
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Drawing recognition performance improves across
development
Why do children include more diagnostic visual information in their
drawings as they grow older? One source of these changes may be
refinements in children’s internal visual concepts. Children might
come to more clearly represent the visual information that best dis-
tinguishes depictions of rabbits from dogs, for example, and may be
able to use this information when recognizing drawings. If so, children
should improve over development in their ability to exploit visual
information in drawings to recognize their intended meaning.

To test this idea, we installed a “guessing game” in the same kiosk
(see Fig. 1c) where children guessed the category that an earlier child’s
drawing referred to. These drawings were randomly sampled from the
larger drawing dataset and thus varied in the amount of diagnostic
visual information they contained. Our goal in designing this task was
for it to be challenging yet not demand that children track a large
number of comparisons. At the beginning of each session, children
completed four practice trials in which they were cued with a photo-
graph and asked to “tap the [vehicle/animal/object] that goes with the
picture,” choosing from an array of four photographs of different
visual concepts (see Fig. 1c). Children were then cued with drawings of
these categories and responded using the same photograph buttons;
photograph matching trials were also interspersed throughout as
attention checks. We sequentially deployed four different versions
with different sets of four perceptually similar categories in each (see
Methods). We restricted our analyses to data from children age 3 and
above, havingobserved that children under 3were less likely to engage
with the task independently. After exclusions, the resulting dataset
included 1,789 children ages 3–10 years-old (see Methods).

We found that children steadily improved across development at
identifying the category that a drawing referred to (see Fig. 6a), though
our youngest participants (3-year-olds) performed only slightly higher
than chance (25%). In contrast, performance on photograph matching
catch trials was relatively similar across ages. All children whose data
were included in our analyses scored greater than 75% correct on
photograph trials and average accuracy in each group ranged from
M = 90–93% correct. Thus, variation in drawing recognition accuracy is
unlikely to be explained by generic differences in motivation or task
engagement.

Does children’s ability to exploit category-diagnostic visual
information during recognition improve over childhood? We

examined how children’s drawing recognition abilities varied with
respect to the amount of diagnostic visual information in a given
drawing. For each drawing that appeared in the guessing games, we
measured diagnostic visual information via a 4-way logistic regression
classifier trained on the VGG-19 features extracted from the drawings
in each guessing game (see Methods). That is, the diagnostic infor-
mation for a dog drawing was defined relative to its perceptual simi-
larity to the other choices in the recognition task (i.e., bird,fish, rabbit).
We then fit a generalized linear mixed effects models predicting chil-
dren’s recognition performance with child’s age, this metric of diag-
nostic visual information, and their interaction as fixed effects (see
Methods).

Drawings with more diagnostic visual information were better
recognized across all ages (fixed effect of classifier evidence in Table 2,
Fig. 6b, CLIP robustness check in Supplementary Fig. 10, Supplemen-
tary Table 9, see also Supplementary Fig. 11). Yet older children were
also better able to capitalize on graded differences in the diagnostic
visual information in drawings when recognizing them (see Fig. 6b;
interaction between fixed effects of classifier evidence and recognizer
age in Table 2). This result held when we restricted our analyses to
children who performed at ceiling on photograph matching trials
(interaction between age and classifier evidence in Supplementary
Table 10) suggesting that these effects are unlikely to be driven by a
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Fig. 6 | Developmental changes in drawing recognition. a Drawing recognition
as a function of the age of the child who participated in the guessing game; each
dot representsdata fromone childwhoparticipated and is scaledby thenumber of
trials they completed. Error bars overlaid on top of the data represent 95% con-
fidence intervals bootstrapped across the visualized raw data from individual
participants in each age bin, with N = 1789 participants over all ages (N = 36,615
trials total).b, cDrawing recognition data plotted separately by the age of the child

participating as a function of the b amount of diagnostic visual information in each
drawing, operationalized as the classifier evidence assigned to each sketch and c
the number of unique object parts in each drawing. Both variables are binned into
deciles for visualization purposes. Error bars represent 95% confidence intervals
bootstrapped over the recognition performance for all drawings included in each
combination of bin/age group. Colors of each line correspond to the ages shown
on the x-axis of a.

Table 2 | Modeling children’s visual recognition behavior

Estimate SE z value Pr(>∣z∣) 2.5%
CI

97.5%
CI

Intercept 0.050 0.121 0.412 0.68 −0.187 0.287

Classifier
evidence

0.477 0.046 10.405 <0.0001 0.387 0.566

Recognizer age 0.317 0.019 16.777 <0.0001 0.280 0.354

Classifier evi-
dence × Recogni-
zer age

0.062 0.014 4.246 <0.0001 0.033 0.090

Model coefficients of a generalized linear mixed-effects model predicting binary visual recog-
nition performance for each drawing as a function of recognizer age and classifier evidence in
eachdrawing thatwas recognizedbychildren. All predictorswerez-scoredprior to analysis such
that coefficients are standardized and comparable. All significance tests are Wald significance
tests based on the coefficient values; these tests are two-tailed. No adjustments were made for
multiple comparisons. See Methods for further model specifications.
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differences in either engagement or in the ability to match drawings
with the picture-cue buttons (Supplementary Fig. 12).

Does children’s ability to use object part information during visual
recognition also change across development15,24? We examined how
drawing recognition accuracy variedwith the number of unique object
parts included in the drawings children tried to recognize. We again fit
a generalized linear mixed-effect model to the recognition data,
modeling the interaction between the number of unique parts in each
drawing and the age of the child recognizing the drawing.

Drawings with more unique object parts tended to be better
recognized—but, unexpectedly, drawings with many object parts were
harder to recognize than drawings with an intermediate number of
parts (Fig. 6c), though therewas substantial variation across categories
(Supplementary Fig. 13, Supplementary Table 11). Critically, we again
found that older children were better able to capitalize on increasing
object part information (interaction between number of unique parts
and recognizer age in Supplementary Table 11). Children’s ability to
integrate additional object part information during recognition chan-
ged across development.

Relationship between visual production and recognition
To what degree do changes in children’s production and recognition
of drawings reflect changes in the same mental representations?
Insofar as children’s abilities to recognize what drawings mean and to
produce meaningful drawings both rely on a shared representation,
then their ability to produce a drawing of a dogmay be correlatedwith
their ability to recognize a drawing of a dog, as in adults41. To explore
this idea, we borrow an analysis technique used in language
acquisition58, where variation in word production is well-predicted by
independent data about that word.

We thus explored how well variation in visual production is rela-
ted to visual recognition at the category-level, acknowledging the
exploratory nature of these analyses. To do so,we examined children’s

visual production and recognition abilities using independent sets of
drawings of the same categories. Note that while some children may
have contributed drawings and participated in the recognition games
(with different categories), these sessions were anonymous and we do
not have access to within-child data. To estimate drawing recognition
abilities, we used children’s performance on the guessing games to
calculate how often children of a given age, on average, were able to
recognize drawings of a given category. To ensure that we were
examining recognition for relatively recognizable drawings, we ana-
lyzed how well children could recognize the top 30 percent most
recognizable drawings of each category (see Methods).

Visual production and visual recognition abilities were positively
related at the category-level (when aggregating across age, r =0.53,
t(14) = 2.362, P = 0.033, CI = [0.05, 0.81], see results broken down by
age in Fig. 7). For example, while dogs and sheep were both harder to
produce and to recognize, rabbits and hats were easier to produce and
recognize. We thus find relative consistency across categories in these
two tasks, suggesting that children’s ability to perform well in both
tasks may rely on a shared visual representation, and paving the way
for future work that seeks to understand the sources of this category
variation using within-child, controlled experiments.

Discussion
We conducted a systematic investigation of how children produce and
recognize line drawings of a wide range of visual concepts across
development. We developed a dataset of children’s drawings (>37K)
and capitalized on innovations in machine learning to quantify chan-
ges in children’s drawings across development. We found robust
improvements in children’s ability to include diagnostic visual infor-
mation via recognizable object parts in their drawings, and these
developmental changes were not reducible to either increased effort
or better visuomotor abilities. Further, we found that children’s
unrecognizable drawings contained information about the animacy
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Fig. 7 | Relating drawing production and recognition. Each dot represents a
category (e.g., hat) at a given age (in years), where the y-axis value represents how
well children of that age produced recognizable drawings of that category (as
assessed by CLIP model classifications, N = 8674 drawings) and the x-axis value
represents how well children of that age were able to recognize the top 30%most

recognizable drawings of that category (as assessed by accuracy in the 4AFC
recognition games,N = 3221 drawings). The size of each dot represents the number
of drawings included per category in model recognition accuracy. Independent
sets of drawings are analyzed in each case.
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and real-world size of the visual concepts they were trying to depict,
highlighting an intermediate stage between scribbles and recognizable
drawings. We also found improvements throughout childhood in
children’s ability to recognize each other’s drawings, particularly in
their ability to capitalize on diagnostic visual information during
drawing recognition. Together, these results document parallel
developmental changes in how children use diagnostic visual infor-
mation when producing and recognizing freehand line drawings,
suggesting that refinements in children’s visual conceptsmay underlie
improvements across both tasks.

More broadly, the present work highlights how the combination
of modern machine learning methods and larger-scale datasets of
naturalistic behaviors can contribute to theoretical progress in devel-
opmental science. By collecting rich data frommany participants over
a large developmental age range, we can more precisely estimate
graded changes in children’s abilities and the degree to which these
trajectories vary across categories. In turn, our use of innovations in
computer vision and computational modeling allow the analysis of the
entirety of this large dataset, capturing variation across both unrec-
ognizable and recognizable drawings in a single analytic approach
(which would have been intractable with human ratings). Using this
approach, wewere able to distinguish variability in children’s drawings
due to a range of different developmental processes—includingmotor
skill and task effort—from variability related to visual concept knowl-
edge. We believe that this work paints a more accurate picture of
developmental change andopens upnewavenues for investigating the
various factors that shape visual concepts throughout development
both using large-scale datasets and controlled, within-child experi-
ments that directly relate visual production and recognition and
examine item variation.

Our exploratory analyses suggested that children’s abilities to
produce and recognize drawings were correlated at the category-level,
e.g., drawings of dogs were both harder to produce and to recognize.
Further, estimates of how often these items tend to be drawn or
experienced did not explain this variation.Whymight some categories
be easier to draw and to recognize?

First, these item effects may be related to other metrics of
experience beyond what we have measured: Perhaps exposure fre-
quency in educational materials or children’s media were not ade-
quately captured in our analyses. Or perhaps children may experience
more invariant exemplars of some categories, making it easier to
identify and draw those categories. For example, while dogs may vary
substantially, ice cream cones have a relatively more invariant form.
Children may develop more refined visual representations for more
frequently experienced and more invariant items, leading to more
recognizable drawings.

Any effects of exposure frequency or form variability might
interact with the degree to which a category has a 3D shape structure
that canbeeasilydepictedusing a linedrawing. For example, canonical
mushrooms have a relatively simple shape, whereas rabbits havemany
sub-parts that need to be accurately depicted and arranged (i.e., head,
ears, nose). In turn, these shape structures may lead different cate-
gories to have more iconic representations that children access when
producing and recognizing drawings. For example, trains are often
depicted as steam trains, as modern trains can be hard to distinguish
from other vehicles as line drawings.

The present work also highlights the gradual progression in chil-
dren’s drawings from exploratory scribbles through an intermediate
stage where their drawings may not unequivocally convey a specific
visual concept (e.g., a giraffe), while still containing enough visual
information to be recognizable as an “animal.” Drawing tasks may
allow children to convey this kind of partial knowledge about a visual
concept that may otherwise be difficult for them to express verbally.
And as children learn more about a specific visual concept—for
example, that giraffes have longer legs than antelopes—these gains in

conceptual knowledge may manifest in their drawings. Drawing pro-
duction tasksmay thus holdpotential for examining graded changes in
children’s visual concept knowledge over development.

Several learning mechanisms are consistent with the develop-
mental changes we observed. First, children likely become better visual
communicators as they learn which visual features aremost effective at
conveying category membership through the process of producing
drawings. Children may also become more aware that drawings can
serve a communicative function and may start primarily drawing for
others versus for themselves. In turn, this process of using drawings to
communicate may have downstream effects on children’s ability to
recognize drawings. Indeed, both drawing experts43 and naïve adults
who practice drawing similar categories39 show enhanced visual
recognition abilities of these categories. Such a mechanism would be
consistent with prior work suggesting that learning to produce letters
by hand can support subsequent letter recognition59,60. Contra a strong
version of this account, however, we did not find effects of drawing
practice at the category level in the present data: for example, ice cream
cones were among the best-recognized categories and estimated (by
parents) to be among the least practiced by children.

A second, non-exclusive possibility is that children are explicitly
learning the diagnostic features of categories as they enrich their
semantic knowledge. For example, children may learn about the
functional properties of different attributes: camels have humps to
store water, and clocks have numbers to tell time. In turn, thse
chamges in semantic knowledge could percolate into children’s visual
concepts and be accessed both when children draw an object and
when they recognize it. Indeed, children change in how they think
about the diagnosticity of different semantic properties across devel-
opment: for example, in early childhood, the fastest cheetah tends to
be seen as the best and the most representative cheetah61. Taxonomic
groupings also become increasingly important in children’s explicit
and implicit conceptual judgements12,62. Children’s evolving semantic
knowledge could thus shape the visual features children use both
when producing and recognizing different visual concepts.

A third possibility, again not mutually exclusive with the other
two, is that children are implicitly learning category-diagnostic infor-
mation through repetitively viewing and categorizing depictions, real-
life examples, and photographs of these different categories. Indeed,
the neural networks used here did not have visuomotor experience
drawing or training about the semantic properties of these categories.
Thus in principle it is possible that children could be refining their
visual concepts without substantial involvement from other cognitive
or sensorimotor systems.

There are various limitations to the generalizability of these find-
ings that future work could address. First, while these datasets are large
and sample heterogeneous populations, all drawings and recognition
behaviors were collected at a single geographical location, limiting the
generalizability of these results to children from other cultural or
socioeconomic backgrounds63. Children in different contexts may
spendconsiderablymoreor less timeviewing andproducingdepictions
of different categories, and different cultural contexts have different
conventions for depicting visual concepts64. Yet some aspects of
drawing production and interpretation are likely shared across cultural
contexts4,65, given prior work that has investigated picture compre-
hension in communities with modest exposure to Western visual
media66,67. Moreover, there is evidence from earlier work that some of
this convergencemay reflect evolutionarily conserved visual processing
mechanisms, as non-human primates can recognize the correspon-
dence between line drawings and their real-world referents68. Future
work that examines drawings across different cultural contexts in both
adults64 and childrenwill help quantify the consistency and variability in
how we represent and depict visual concepts.

Second, while we imposed strong filtering requirements, we were
not present while the children were drawing or guessing at the kiosk
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and thus cannot be sure that we eliminated all sources of noise or
interference. Many sources of additional interference would only
generate noise in our data, though, rather than creating specific age-
related trends. Nonetheless, we replicated our main experimental
results on drawing production in a controlled, experimental context
with a smaller set of categories (see Supplementary Fig. 6).

Third, since these datasets are cross-sectional, they do not
directly relate visual production and recognition abilities at the indi-
vidual level. Our exploratory, category-level analyses suggest variation
in these two abilities are correlated across development; ultimately,
however, within-child measurements will be necessary to confirm that
changes in children’s visual concepts underlie the observed changes in
both tasks. In addition, these correlational analyses can only provide
hints as to whether changes in visual production cause changes in
visual recognition or vice versa. Finer-grain, within-child training stu-
dies (as in ref. 30) could provide traction on the direction of causality
between visual production and recognition.

Overall, our results call for further systematic, experimental
investigations into the kinds of experience—including visuomotor
practice, semantic enrichment, and visual exposure—that may influ-
ence visual production and recognition in children, and we hope that
the open datasets and tools we have created here will open up new
avenues for such future work. We propose that a full understanding of
how children produce and recognize drawings of visual concepts will
allow aunique andnovel perspective on theboth thedevelopment and
the nature of visual concepts: the representations that allow us to
easily derive meaning from what we see.

Methods
Ethics approval
All research presented here was approved by the Institutional Review
Board at Stanford University under Protocol 43992, Development of
Children’s Drawing Abilities.

Drawing station details
While the interface was designed to be navigable by children, the first
page of the drawing station showed a short waiver of consent form that
parents completed and asked parents to enter their child’s age in years;
no other demographic information was collected. Afterwards, video
prompts of an experimenter guided the child through the rest of the
experiment; an initial video stated that this game was “only for one
person at a time” and asked children to “draw by themselves.” Every
session at the drawing station started with tracing trials before moving
on to the category prompts ("What about a [couch]? Can you draw a
[couch]?”). Children could stop the experiment at any timebypressing a
stop button; each trial ended after 30 seconds or after the child pressed
the “next”button. Sixdifferent setsof eight categoryprompts rotated at
the station, yielding drawings from a total of 48 categories (see Sup-
plementary Fig. 1, airplane, apple, bear, bed, bee, bike, bird, boat, book,
bottle, bowl, cactus, camel, car, cat, chair, clock, couch, cow, cup, dog,
elephant, face, fish, frog, hand, hat, horse, house, ice cream, key, lamp,
mushroom, octopus, person, phone, piano, rabbit, scissors, sheep,
snail, spider, tiger, train, tree, TV, watch, whale); these categories were
also chosen to overlap with those in the QuickDraw database of adult
drawings (https://github.com/googlecreativelab/quickdraw-dataset).
Each set of category prompts that rotated at the station thus included
both animate and inanimate categories as well as commonly and
infrequently drawn categories; category prompts were presented in a
random order. No statistical method was used to predetermine sample
size; rather,we aimed to gather as large of a dataset as possible anddata
collection was stopped in March 2020 due to COVID-19.

Drawing dataset filtering & descriptives
Given thatwe could not easilymonitor all environmental variables at the
drawing station that could impact task engagement (e.g., ambient noise,

distraction from other museum visitors), we anticipated the need to
develop robust and consistent procedures for data quality assurance.
We thus adopted strict screening procedures to ensure that any age-
related trends we observed were not due to differences in task com-
pliance across age. Early on, we noticed an unusual degree of sophisti-
cation in 2-year-old participants’ drawings and suspected that adult
caregivers accompanying these children may not have complied with
task instructions to let children draw on their own. Thus, in subsequent
versions of the drawing game, we surveyed participants to find out
whether another child or an adult had also drawn during the session; all
drawingswhere interferencewas reportedwere excluded fromanalyses.

Out of 11797 subsequent sessions at the station, 719 reported
interference from either parents or other children; see Supplementary
Table 2 for a detailed breakdownof reported interference by each type
for each age group. These participants’ drawings were not rendered or
included in analysis. When observing participants interacting with the
drawing station, we noted that most children’s parents did not fill out
the survey because they were either talking to other parents or taking
care of a sibling. Further, while children could contribute drawing data
more than once if they chose, this did not occur during our structured
observation of the kiosk.

Rawdrawing data were then screened for task compliance using a
combination of manual and automated procedures (i.e., excluding
blank drawings, pure scribbles, and drawings containingwords). A first
subset of drawings (N = 15,594 drawings) was filtered manually by one
of the authors, resulting in N = 13,119 drawings after exclusions (15.8%
exclusion rate); subsequently, drawing filtering was crowd-sourced via
Prolific. 390 participants first completed a practice round demon-
strating valid and invalid drawings and then viewed 24drawings froma
intended category at a time and selected the invalid drawings they
judged to come from from off-task participants. Participants were
reminded that unrecognizable drawings were still “valid” drawings,
and could proceed to the next category only after selecting a “catch”
invalid drawing. Each drawing in the dataset was viewed at least twice
by twodifferent participants. To be conservative, any drawing that was
marked as ‘invalid’ by a participant was excluded from the dataset.
These stringent filtering criteria resulted in the exclusion of an addi-
tional 9897 drawings, leading to an overall exclusion rate of 24.57% of
the drawings and a final set of 37,770 drawings from 8084 sessions. In
the final dataset, thereweremore younger than older children, despite
filtering; see Supplementary Table 1 for a complete summary.

Experimental dataset procedure
In a separate experiment52,69, children were seated in front of a
touchscreen tablet with a trained experimenter. As in the larger data-
set, children completed two shape-tracing trials, and then children
produced drawings of 12 familiar object categories (airplane, bike,
bird, car, cat, chair, cup, hat, house, rabbit, tree, watch) which were
randomly assigned to different cue-types (verbal vs. picture). In this
paper,we analyze only verbal-cued drawings for sake of comparison to
the drawing station dataset. 135 children participated in the experi-
ment; 6 participantswere excluded, including 3 for skippingmore than
6 drawing trials and 3 for scribbling three or more times in a row. Six
additional participants were tested but their data was not recorded
due to a technical error, and two participants never advanced past the
practice trials, leading to a final sample of 121 children. Approximately
twenty participants were included in each age group (i.e., twenty 4-, 5-,
6-, 7-, 8-, and 9-year-olds); see full breakdown in ref. 52. No additional
demographic data was recorded about the participants. This protocol
was also approved by the Institutional Review Board at Stanford Uni-
versity (43992, Development of Children’s Drawing Abilities).

Measuring tracing accuracy
We developed an automated procedure for evaluating how accurately
participants performed the tracing task that was validated against
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empirical judgments of tracing quality. We decompose tracing accu-
racy into two components: a shape error component and a spatial error
component. Shapeerror reflects thedegree towhich the child’s tracing
matched the contours of the target shape; the spatial error reflects the
degree towhich the location, size, andorientation of the child’s tracing
matched the target shape.

To compute these error components, we applied an image
registration algorithm, AirLab53, to align each tracing to the target
shape. This yielded an affine transformationmatrix thatminimized the
pixel-wise correlation distance between the aligned tracing, T, and the

target shape, S: LossNCC = �
P

S�T�
P

EðSÞEðTÞ
N
P

VarðSÞVarðTÞ , where N is the number of

pixels in both images.

The shape error is then the final correlation distance between the
aligned tracing and the target shape. The spatial error is then the
magnitude of three distinct error terms: location, orientation, and size
error, derived by decomposing the affine transformationmatrix above
into translation, rotation, and scaling components, respectively. This
procedure generated four error values for each tracing: one value
representing the shape error (i.e., the pixel-wise correlation distance)
and three values representing the spatial error (i.e., magnitude of
translation, rotation, and scaling components).

Although we assumed that both shape and spatial error terms
should contribute to our measure of tracing task performance, we did
not know how much weight to assign to each component to best
predict empirical judgments of tracing quality. In order to estimate
these weights, we collected quality ratings from adult observers
(N = 70) for 1325 tracings (i.e., 50–80 tracings per shape per age), each
of which was rated 1–5 times. Raters were instructed to evaluate “how
well the tracingmatches the target shape and is aligned to the position
of the target shape” on a 5-point scale.

We fit an ordinal regression mixed-effects model to predict these
5-point ratings, which contained correlation distance, translation,
rotation, scaling, and shape identity (squarevs. star) aspredictors,with
random intercepts for rater. This model yielded parameter estimates
that could then be used to score each tracing in the dataset (N = 14372
tracings from 7612 children who completed at least one tracing trial).
We averaged tracing scores for both shapes within each session to
yield a single tracing score for each participant.

Measuring effort covariates
For eachdrawing trial, children hadup to 30 seconds to complete their
drawings with their fingers. We recorded both the final drawings and
the parameters of each stroke produced by children at the drawing
station, allowing us to estimate the amount of time children put into
their drawings. As a second measure of effort, we also counted the
number of strokes that children put into a given drawing. Finally, we
estimated the proportion of the drawing canvas that was filled (e.g.,
‘ink used’) by computing the proportion of each final drawing that
contained non-white pixels.

VGG-19: visual encoder
To encode the high-level visual features of each sketch, we used the
VGG-19 architecture48, a deep convolutional neural network pre-
trained on Imagenet classification. For our main analysis, we used
model activations in the second-to-last layer of this network, which is
the first fully connected layer of the network (FC6), as prior work
suggests that it contain more explicit representations of object iden-
tity than earlier layers40. Raw feature representations in this layer
consist of flat 4096-dimensional vectors. to whichwe applied channel-
wise normalization across all filtered drawings in the dataset. For
additional analyses using the earlier convolutional layers, we first
applied spatial averaging over the outputs of each layer to reduce their
dimensionality, as in ref. 40, before also applying channel-wise
normalization.

VGG-19: logistic regression classifiers
Next, we used these features to train object category decoders. To
avoid any bias due to imbalance in the distribution of drawings over
categories (since groups of categories ran at the station for different
times), we sampled such that there were an equal number of drawings
of eachof the 48 categories (N=22,272 drawings total).We then trained
a 48-way logistic classifier with L2 regularization (tolerance =0.1, reg-
ularization =0.1), and used this classifier to estimate the category
labels for a random held-out subset of 96 drawings (2 drawings from
each category). No additional metadata about the age of the child who
produced each sketch was provided to the decoder. This procedure
was repeated for entire dataset (K = 232 fold) yielding both a binary a
recognition score and the softmax probability assigned to each target
class in the dataset. We define classifier evidence as the log-odds ratio
of the probability assigned to the target category vs. the other cate-
gories in the dataset; this metric thus captures the degree to which a
given drawing contains visual information that is diagnostic of the
target category (and not of the other categories in the dataset); these
log-transformed values are also more suitable for the linear mixed
effects models used in analyses.

CLIP classifications
CLIP classifications were obtained by assessing the similarity between
model embeddings for each sketch to each category label, as in ref. 49.
This method thus also yields both binary classification scores and
probability scores for each of the 48 categories in the dataset.

For these analyses, we used the ViT-B/32 implementation of CLIP
publicly available at https://github.com/openai/CLIP. Model features
were extracted for center-cropped versions of each sketch in the entire
dataset (N = 37,770) and for the tokenized text versions of the labels
for each of the 48 categories (e.g., “a dog”). We then computed the
cosine similarity between the features for each sketch and each of the
48 category labels and assessed which category label received the
highest similarity. If the category label that had the highest similarity
was the category children were prompted to draw, this was counted as
a correct classification.

Human recognition scores: experimental dataset
We measured the recognizability of each drawing in the controlled,
experimental dataset via an online recognition experiment. Adult
participants based in the U.S. were recruited via Prolific for a 15-min
experiment and asked to identify the category depicted in a random
subset of approximately 140 drawings; each drawing was shown to 10
participants. No statistical method was used to predetermine sample
size. Participants were shown these drawings in a random sequence
and asked “What does this look like?” and selected their responses
from the set of 12 categories and were encouraged to provide their
best guess if they were unsure. No participants were excluded from
analysis for missing the catch trial, which was included to verify that
participants could accurately describe their goal in this task. We then
computed a recognition score for each drawing, reflecting the pro-
portion of participants who correctly identified the target category.

Mixed-effect models
Two mixed effects models were fit to assess the degree to which
children produced more recognizable drawings across childhood. A
first generalized mixed-effect model was fit to the binary classification
scores for each drawing using a logit linking function. A second linear
mixed-effect model was fit to the log-odds target probability assigned
to each drawing, restricting our analyses to correctly classified draw-
ings. In both cases, we included fixed effects of children’s age (in
years), estimated drawing frequency for each category (via parental
report), their interaction, children’s estimated tracing score (see
above), the time children spent drawing (in seconds), the mean
intensity of the drawing (i.e., percentage of non-white pixels), and the
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number of strokes children used. All predictors were scaled to have a
mean of 0 and a standard deviation of 1, making coefficients inter-
pretable relative to each other. Random intercepts were included for
each participant and each category.

Generalized linear mixed effects models were run using the lme4
code packages70 in R, where P-values are based on asymptotic Wald
tests, which is standard practice for generalized linear models. Linear
mixed-effect models were run using lmerTest, where p-values were
estimated via Satterthwaite’s degrees of freedom method. All sig-
nificance tests were two-tailed; we did not correct for multiple com-
parisons. Residuals for each model were examined to ensure that the
model was not biased, and predictors were examined to ensure that
they were not colinear (see Supplementary Table 6). Full model spe-
cifications and code package versions are included in the repository at
https://osf.io/qymjr/.

Animacy & object size information in misclassified drawings
For each misclassified drawing, we calculated whether the category
assigned by the logistic regression classifier was the same animacy as
the target category, assigning a binary animacy classification score for
eachdrawing. The same procedurewas repeated for inanimate objects
with respect to their real-world size (big: approximately larger than a
chair, small: could be held with one hand)54. These binary scores were
averaged for each age and category, yielding a value between 0 and 1
representing the proportion of the drawings that were identified as
having the correct animacy/size. As the proportion of animals/inani-
mate objects and big/small inanimate objects was not exactly balanced
in the dataset, we subtracted the baseline prevalence for each broad
category (i.e for animals, inanimate objects, big objects, and small
objects) from this proportion. These values are plotted in Fig. 3b, c, as
are the bootstrapped 95% confidence intervals calculated across all 48
categories using the baseline-corrected category values.

Visual recognition task
On each trial of the guessing game, a photograph or drawing of an
object category was presented on the screen, and children were asked
to “tap the [animal/vehicle/object] that goes the with the [drawing/
picture]”; response choices were indicated by circular buttons that
contained photographs of canonical exemplars from each category, as
well as the name of the category written above; the position of these
response buttons was randomized for each participant. A fifth
response choice was a button with a question-mark icon that could be
used by participants to indicate they didn’t know which category the
drawing belonged to. To familiarize participants with the interface, the
first four trials of every gamewere four photograph trials, one for each
of the response choices. To encourage accurate guessing, a pleasant
sound was played when the correct category was chosen, and the box
surrounding the image briefly turned green; no feedbackwas given for
incorrect trials. Every ten trials, a catch trial appeared where partici-
pants were required to match a very similar photograph to the pho-
tographic response buttons.

Visual recognition task: drawing selection
We selected four subsets of categories for the guessing game at the
station: small animals (dog, fish, rabbit, bird), vehicles (train, car, air-
plane, boat), small, inanimate objects (hat, bottle, cup, lamp), and large
animals (camel, sheep, bear, tiger). Each version of the guessing game
ran separately for approximately 2 months. For each game, we ran-
domly selected drawings (20–25 per category, depending on avail-
ability)made by children ages 4-8 at the drawing station.We chose this
age range to cover a wide range of drawing abilities and to ensure
equal numbers of drawings were included per age group (as 9–10 year-
old’s are infrequent visitors to the museum). This resulted in 516—616
drawings for each guessing game from which 48 drawings were ran-
domly sampled for each participant (8 drawings made by 4-,5-,6-,7-,

and 8-year-olds). If children completed the entire session, this resulted
in a total of 48 trials for each participant (40 drawing trials and 8
photograph matching trials).

Recognition data inclusion
As with the drawing data, we excluded any sessions where there was
reported interference from parents or other children. As 2-year-old’s
showed significantly better performance than 3-year-old’s in our first
two guessing games—signaling some interference from their caregivers
or siblings that was not reported in the surveys –we chose to exclude 2-
year-old’s from subsequent analyses. We excluded children who star-
ted the game but did not complete more than 1 trial after the practice
trials (N = 1068 participants) and the 238 adults who participated. We
also excluded all trials with reaction times slower than 10 s or faster
than 100ms, judging these to be off-task responses. Next, we excluded
participants on the basis of their performance on practice and catch
photograph matching trials. Given that these catch trials presented a
very easy recognition task, we excluded participants who did not
achieve at least 75% accuracy on these trials (N = 795). The remaining
1789 participants who met this criterion completed an average of
M = 21.69 trials. On total, we analyzed 36,615 trials where children
recognized each other’s drawings. No statistical method was used to
predetermine sample size. These analysis choices were pre-registered
after examining data from two of the guessing games and then applied
to the entire dataset (see registrations on https://osf.io/qymjr/).

Recognition data analyses
To calculate the classifier evidence associated with each sketch that
children recognized, we used the same visual encoder to extract visual
features for each sketch (see Visual Encoder), and iteratively trained
logistic regression classifiers (see Logistic Regression Classifier). For
these analyses, we restricted the classification set to the drawings that
were presented in each version of the guessing game tomatch the task
conditions of the guessing game. We trained a separate logistic
regression for each sketch that was presented using leave-one-out
cross-validation. This procedure thus yielded probabilities assigned to
eachof four categories in eachguessing game; theseprobabilitieswere
used to calculate the log-odds ratios for the target category of each
sketch which we refer to as classifier evidence. Due to random sam-
pling, not every sketch included in the game had valid guesses asso-
ciated with it; these sketches were thus not included in analyses. We
then modeled children’s recognition behavior in a generalized linear
mixed-effect model, where recognizer age (in years), classifier evi-
dence, and their interaction were specified as fixed effects. All pre-
dictors were scaled between 0 and 1. We included random intercepts
for the intended category of the sketch and for each subject who
participated in the guessing game; random slopes were also included
for the effect of classifier evidence on each intended category.

Crowd-sourcing semantic part labels
We designed a web-based crowdsourcing platform and recruited 50
English-speaking adult participants from Prolific to identify the basic
parts of objects for each of the 16 object categories. On each trial,
participantswere cuedwith a text label of anobject category and asked
to list 3 to 10object parts that came tomind (e.g., head, leg, tail, etc. for
“tiger”). Participants were instructed to write only concrete parts of an
object (e.g., “tail”) rather than abstract attributes (e.g., “tufted”), to use
common names of parts rather than technical jargon (e.g., “pre-
hensile”), and to generate as complete a part list as they could for each
object category. We applied lemmatization to the resulting part
decompositions to remove redundant part labels, such as “hoof” and
“hoofs”, and manually edited part labels that were spelled incorrectly
or with alternative spellings. We then selected the top 10% of part
names that were most frequently listed. This generated a total of 82
object parts with a range of 5-13 possible parts per object category.
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Semantic part labeling
First, to ensure that these drawings were representative of the larger
dataset, we chose 16 visual concepts (half animate, half inanimate) and
randomly sampled drawings from children 4–8 years of age; these are
the same drawings included in the visual recognition games.

We then developed a web-based annotation paradigm to obtain
detailed annotations of how each pen stroke in children’s drawings
corresponded to the different parts of the depicted objects. 1034
English-speaking adult participants were recruited from Prolific and
completed the semantic annotation task. We excluded data from 78
additional participants for experiencing technical difficulties with the
web interface (N = 11) and for having low accuracy on our attention-
check trial (N = 67). Data collection was stopped when every drawing
had received annotations from at least three annotators.

Each annotator was presented with a set of 8 drawings randomly
sampled from the drawing dataset but consistent within the same
animacy and object size (i.e., small animals, large animals, vehicles,
household objects). Each drawing was accompanied by the name of its
object category (e.g., “airplane”), as well as a gallery of crowd-sourced
part labels that corresponded to it. For each stroke in the presented
drawing, annotators were prompted to tag it with the part label that
described the part of the depicted object that it represented. Anno-
tators were permitted to label a stroke with multiple part labels if they
believed a stroke to represent multiple different parts of the depicted
object, and were able to write their own custom label if they believed
that none of the provided part labelswere fitting. They could also label
a stroke as unintelligible if they could not discern what it represented.
Annotators also completed an “attention-check” trial, consisting of a
pre-selected drawing that had been annotated by a researcher and
then randomly inserted into the set of drawings. If annotators did not
match the researcher’s annotation criteria for this drawing, data ses-
sions from these annotators were excluded from subsequent analysis.

Semantic part annotation data preprocessing
First, we evaluated how often annotators agreed on what each stroke
of children’s drawings represented by calculating the inter-rater con-
sistencyamongannotators. Across drawings, annotators agreedon the
same part label for 69.9% of strokes. There was modest improvement
in agreement across age, with with drawings produced by older chil-
dren eliciting more consistent annotations (4-year-old drawings =
68.3% mean agreement, 8-year-old drawings = 69.8% mean agree-
ment). We retained stroke annotations that were assigned the same
part label(s) by at least two of three annotators. While annotators
infrequently wrote custom labels (we did not analyze custom anno-
tations for the present analysis) they only used 68 of the available 82
part labels. Our resultant dataset therefore contained 14,159 annotated
strokes across 2088 drawings.

Part inclusion and emphasis calculation
For part inclusion, we calculated the number of unique object parts
assigned to each drawing; strokes labeled as unintelligible were not
counted as distinct parts. For part emphasis, we calculated the pro-
portion of the total length of strokes that were attributed to a parti-
cular object part in a drawing (e.g., wings), relative the total length of
all strokes in the entire drawing (including strokes that were not
agreed upon or that were unintelligable). If strokes were used to
represent multiple object parts, we took the total length of the stroke
and divided it by the number of parts that it was assigned to.

Relating visual production and recognition
For these exploratory analyses, we used CLIP model classifications, as
CLIP showed less dramatic category variation relative to VGG-19 clas-
sifications (see Supplementary Fig. 4). In addition, within the inde-
pendent set of sketches used to assess children’s recognition, CLIP

showed a higher correlation with children’s recognition behaviors
(aggregating across individual sketches; VGG-19, r =0.28;
CLIP, r =0.43).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All filtered drawings, raw behavioral data from the recognition
experiments, and all pre-processed data that support the findings are
available at https://doi.org/10.17605/OSF.IO/QYMJR, as are the pre-
processed data from ref. 52.

Code availability
The code used to analyze the data are available at the same repository
as the data; https://doi.org/10.17605/OSF.IO/QYMJR.
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