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QUESTION RESULTS

Humans produce sparser sketches under stronger time constraints.

How well do vision models exhibit
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Sketches that are more detailed elicit ...

METHODS

...guesses that are semantically close

...higher classification accuracy. ...less variable response labels. vo the true label when incorrect
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Models vary in their degree of alignment to human behavior but a
large gap remains between human and model sketch understanding.
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— A CLIP-based sketch generation algorithm emulates human
Over 90K sketches including sketches of each concept at 4 levels .
of detail made by humans and CLIPasso. sketches at greater levels of detail
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TAKEAWAYS

We introduce a new dataset of >90K sketches at varied abstraction levels made | | correspondence to:

128-way classification
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Dog x . . CLIPasso-generated and human-made sketches elicit similar responses at

greater levels of detail.



