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Humans appear to intuitively grasp definitions foundational to formal geometry, like definitions that
describe points as infinitely small and lines as infinitely long. Nevertheless, previous studies exploring
human’s intuitive natural geometry have consistently focused on geometric principles in planar
Euclidean contexts and thus may not comprehensively characterize humans’ capacity for geometric rea-
soning. The present study explores whether children and adults can reason about linearity in spherical
contexts. We showed 48 children (age range: 6–8 years) and 48 adults from the U.S. Northeast two dif-
ferent paths between the same two points on pictures of spheres and asked them to judge which path
was the most efficient for an actor to get from a starting point to a goal object. In one kind of trial, both
paths looked curved in the pictures, and in another kind of trial, the correct curved-looking path was
paired with an incorrect straight-looking path. Adults were successful on both kinds of trials, and
although children often chose the incorrect straight-looking path, they were surprisingly successful at
identifying the efficient path when comparing two that were curved. Children thus may build on a natu-
ral geometry that gives us humans intuitions that are not limited to the formal axioms of Euclidean ge-
ometry or even to the Euclidean plane.

Public Significance Statement
Children and adults succeed in judgements of spherical linearity, i.e., identifying a “line” on a sphere as
the most efficient path between two points. Children’s seemingly advanced judgments about spherical
geometry suggest the possibility of effective geometry pedagogies that go beyond planar contexts.

Keywords: Euclidean geometry, spherical geometry, spatial cognition, navigation, action understanding

Before surfaces, there are lines, at least according to Euclid’s
Elements. Definitions 2 and 4 of the Elements, historically among
the most important texts in all of formal mathematics, introduce a
line as infinitely thin and a straight line as lying evenly with its

points (Euclid 300 BCE/2007; Definitions 1 and 3 introduce points,
and Definitions 5 through 7 introduce surfaces). This definition of a
straight line is innovative and curious upon reflection (Trudeau,
2001), but we intuitively grasp it as picking out the shortest, most
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efficient path between two points. For example, imagine taking a
string by its ends: It does not form a straight line until you pull it
taut so that it lies evenly with its ends. Euclid may have thus
intended to exclude any curve, and this is the meaning of Definition
4 on a plane. But is our identification of straight lines, like their def-
inition, prior to and perhaps not limited to any particular kind of
geometric surface? On a sphere, for example, a taut string becomes
a curved geodesic. Are our intuitions strictly Euclidean or are they
more flexible, allowing us to identify such lines on surfaces that are
not planar, like spherical surfaces?
Prior work investigating humans’ ability to identify and reason

about such foundational definitions, principles, and figures of for-
mal geometry has consistently focused on geometric intuitions that
align with planar Euclidean geometry. For example, recent
research relying on cross-species, cross-cultural, developmental,
and computational approaches suggests that from childhood and
regardless of formal schooling, humans, but not nonhuman prima-
tes, are spontaneously attuned to foundational principles of planar
Euclidean geometry (e.g., lines, length, parallelism, perpendicular-
ity, and symmetry) such that humans uniquely are able to mentally
compose these Euclidean principles with an algorithmic-like “lan-
guage of thought” for geometry (Amalric et al., 2017; Sablé-
Meyer et al., 2021). Other research relying on these same broad
approaches suggests that separate cognitive systems for geometry
inherited by humans through evolution—one system that priori-
tizes distance and directional information to support navigation
and one system that prioritizes length and angle information to
support visual form recognition—provide complementary geomet-
ric sensitivities that get productively combined through human de-
velopment to form an intuitive natural geometry consistent with
planar Euclidean geometry (Dillon et al., 2013; Dillon & Spelke,
2018; Spelke et al., 2010). Even studies that have probed humans’
both planar and spherical geometric intuitions have nevertheless
emphasized that intuitive geometry reflects planar Euclidean prin-
ciples. For example, Izard et al. (2011) investigated the geometric
intuitions of adults and children from the Unites States, France,
and from an Amazonian village, in which there is no formal
schooling in geometry. Participants were asked to reason about the
properties of points and lines described in the context of a planar
surface and, for a subset of questions, a spherical surface (e.g.,
“Can two lines never intersect?”). Older children and adults across
cultures performed well on the questions presented in the planar
context and changed their answers as needed when the same ques-
tions were presented in the spherical context. Younger children
showed less sensitivity to context but also produced fewer correct
planar responses. Izard et al. (2011) concluded that humans are
cognitively prepared to reason about planar surfaces and that pla-
nar geometric intuitions spontaneously develop in all humans and
are reinforced by everyday experiences (e.g., navigation) and for-
mal education. Because of the small sample sizes (an inherent li-
mitation to testing the Amazonian population) and because of the
relatively few questions presented in the spherical context, this
study nevertheless could not support any strong developmental
conclusions about participants’ spherical intuitions.
The present work does not adjudicate among the cognitive theo-

ries outlining human’s intuitive natural geometry or refute the idea
that humans may develop geometric intuitions that support reason-
ing about planar Euclidean geometry. Rather, the present work
suggests that in its sole focus on planar contexts, prior work falls

short in comprehensively describing human’s intuitive geometry
as both a central cognitive achievement of the human mind and as
a foundation for humans’ capacity to understand formal geome-
tries more generally, both Euclidean and non-Euclidean. While
different formal geometries describe different surfaces, they never-
theless adopt the same principle of a line as the shortest, most effi-
cient path between two points. In investigating children’s and
adults’ intuitions about lines on spherical surfaces in the present
study, we thus explore the possibility that children and adults have
geometric intuitions that go beyond planar contexts, allowing us to
provide a more complete picture of human intuitive natural
geometry.

Method

Participants

Participants were 48 English-speaking children, ranging in age
from 6 to 8 years (Mage = 7 years, 7 months; range = 6 years, 1
month–8 years, 11 months; 27 girls). One additional child was
excluded because they had participated in a pilot version of the
study. Participants were recruited from the National Museum of
Mathematics in New York City and New York University’s child
participant database and were given a small thank you gift. Forty-
eight English-speaking adults (Mage = 19 years; range = 18–22
years; 34 women) also participated. An additional six adults were
excluded because of failure to follow task directions (n = 3);
choosing the response on one side of the screen over 90% of the
time (n = 1); or experimenter error (n = 2). Adults were recruited
from New York University’s participant study pool and were
given course credit or payment. The use of human participants for
this study was approved by the Institutional Review Board at New
York University.

Material, Design, and Procedure

The stimuli consisted of 90 two-dimensional (2D) pictures of
three-dimensional (3D) spheres generated by custom code in
Mathematica (Version 11; Wolfram Research, Inc., 2016). Each
sphere depicted a purple point and an orange point, connected by a
thin black path. The path could either be the shortest path between
the points (i.e., it could be a geodesic, which, if the path continued
around the whole sphere, would be a great-circle and cut the
sphere in half; see Figure 1), or it could not be the shortest path
between the two points (i.e., it could be an arc, which, if the path
continued around the whole sphere, would not cut the sphere in
half). Because each picture captured the sphere from only one
point of view, the 2D geometric properties of how the paths looked
varied. In particular, both geodesics and arcs could look straight or
curved in the picture. By varying the point of view at which the
spheres were presented, we could therefore vary both spherical lin-
earity (i.e., whether the path was a geodesic or arc) and planar lin-
earity (i.e., whether the path looked straight or curved on the 2D
picture plane).

On each trial, participants saw a pair of sphere pictures (see
Figure 2) presented using PsychoPy (Version 1.90.3; Peirce et al.,
2019) on a 13-in. laptop screen by an experimenter in a quiet testing
room. The distance between the two depicted points on the spheres
and their heights on the spheres were always matched across
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pictures in the same trial but varied across trials, with five possible
distances and three possible heights above or below the equator.
Curved paths varied in curvature in a semicontinuous way based on
a geodesic’s true curvature. Paths farther from the equator appeared
more curved than paths nearer to the equator since geodesics appear
straight at the equator (see Figure 1). For paths at the same height
on the sphere, those whose endpoints were farther apart versus
closer together appeared more curved since paths with more distant
points cover more of the sphere’s curved surface.
In two blocks of 30 trials each, participants were asked to evalu-

ate which of the two depicted paths was the “easiest,” most effi-
cient path from one point to the other on the sphere (see Figure
2A). In one trial type (i.e., the curved arc condition), participants
compared curved geodesics to curved arcs (see Figure 2B). The
curved arcs were generated in Photoshop (CC 2015.5, Version
17.0; Adobe, Inc., 2015) by reflecting the curved geodesics across
the principal axis between the two points. For these trials, partici-
pants thus compared two paths that matched in their depicted
length and curvature. In the other trial type (the straight arc condi-
tion), participants compared curved geodesics of the same length
and curvature as those in the curved arc condition to straight arcs

(see Figure 2C). The straight arcs depicted what looked like a
straight path in the picture between the two points, and so for these
trials, participants compared two paths that did not match either in
their depicted length or in their curvature. Curved geodesics were
the correct responses in both conditions.

Trial types were mixed within each block, trial order within
each block was randomized across participants, and curved geode-
sics appeared 50% of the time on each side of the screen. To pro-
tect against any effects of path orientation on performance, paths
were not presented within 10° of the horizontal. They also varied
in orientation across trials and across participants (whole-degree
value ranges: 10°�170° and 190°�350°) but were matched across
the two pictures in each trial.

The task was designed to probe participants’ intuitions of a line
as the most efficient path between two points on a sphere without
requiring their knowledge of any formal definitions. Prior to com-
pleting the test trials, participants completed practice trials, in
which they were introduced to a “very lazy” purple snail, who
always took the most efficient path from a starting point to an or-
ange mushroom, a favorite food. Across five practice trials, partic-
ipants were asked to judge, for example, whether the snail would
push two blocks (correct) or three blocks (incorrect) out of the
way to get to the mushroom. Participants received corrective feed-
back on the practice trials. Participants were then shown a picture
of a purple point and an orange point on an otherwise blank screen
and were told that the snail would look like the purple point, and
the mushroom would look like the orange point. Finally, they
were shown a large picture of sphere (with no points or paths) and
were told that the snail and mushroom would be on a “perfectly
round land” shaped like a “really big ball.” For each test trial, par-
ticipants saw two pictures of spheres, one on each side of the
screen and each presenting a path. The experimenter asked which
path was the easiest path the snail could take to the mushroom and
recorded with a button press to which picture participants pointed.
Participants received no corrective feedback on the test trials.

Results

Results With 6- to 8-Year-Old Children

Children’s responses are presented in Figure 3. We focused on
the accuracy and consistency of participants’ responses, and Wald
tests evaluate regressions’ main effects and interactions. A bino-
mial mixed-model logistic regression found that children per-
formed significantly below chance overall (p = .455, 95%
confidence interval [CI] [.426, .485], p = .003). An additional
regression with accuracy as the dependent variable, condition as a
fixed effect, and random intercepts for participants revealed a
main effect of condition, v2(1) = 568.44, p , .001, with children
performing above chance in the condition comparing curved geo-
desics to curved arcs (p = .695, 95% CI [.658, .730], p , .001) but
below chance in the condition comparing curved geodesics to
straight arcs (p = .216, 95% CI [.187, .248], p , .001). A third
regression that added curvature as a fixed effect revealed an effect
of condition, v2(1) = 133.11, p , .001, curvature, v2(1) = 24.99,
p , .001, and an interaction between condition and curvature,
v2(1) = 35.34, p , .001. Curvature had a significant effect on ac-
curacy in both conditions (curved arc condition: p = .888, 95% CI

Figure 1
Examples of Spherical and Planar Linearity

Note. Geodesics only look straight in a picture when they circumscribe
the sphere’s equatorial plane or are rotated only around the front-back
axis (A); they look curved when shown from another point of view (B).
Arcs, in contrast, can look either straight (C) or curved when shown at a
point of view other than one intersecting the equator; they look curved
when they intersect the equator (D). Participants in this experiment com-
pared curved geodesics (B) to straight arcs (C) and curved arcs (D). For
illustrative purposes, we show straight geodesics (A) here, but these paths
were not included in the experiment. We also show here (but not in the
experiment) the continuation of the depicted paths with dotted lines
beyond the purple and orange end points to illustrate that, while geodesics
will cut spheres in half, arcs will not. See the online article for the color
version of this figure.
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[.779, .947], p , .001; straight arc condition: p = .167, 95% CI
[.076, .330], p , .001). In the curved arc condition, children per-
formed better with greater curvature, but in the straight arc condi-
tion, children performed worse with greater curvature.
We next examined the consistency of children’s responses by

evaluating whether an individual’s correct response to a geodesic

curve in the straight arc condition predicted their correct response
to a geodesic curve of the same length and curvature in the curved
arc condition. A binomial mixed-model logistic regression with
responses to curved geodesics in the curved arc condition as the de-
pendent variable, responses to curved geodesics in the straight arc
condition and curvature as fixed effects, and random intercepts for

Figure 2
A Child Participant and Screen Shots of Example Trials

Note. A child participant (A). In the curved arc condition (B), participants compared
curved arcs (incorrect; left) to curved geodesics (correct; right). In the straight arc condition
(C), participants compared curved geodesics (correct; left) of the same length and curvature
as those in the curved arc condition to straight arcs (incorrect; right). The curved geodesics
were presented at different orientations across conditions. See the online article for the color
version of this figure.

Figure 3
The Proportion of Geodesic and Arc Responses Across Trials and Participants in
the Curved Arc and Straight Arc Conditions for Both Children and Adults

Note. The curved geodesics were always the correct response, and chance responding was
50%; see text for statistical analyses. See the online article for the color version of this figure.
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the particular geodesic queried and for participants revealed that
children’s responses in the straight arc condition did not predict
their responses in the curved arc condition, v2(1) = .27, p = .604.
There was a main effect of curvature, v2(1) = 19.54, p , .001, and
there was no effect of the interaction term, v2(1) = .51, p = .476.

Results With Adults

Adults’ responses are presented in Figure 3. All analyses were
identical to those run on the children’s data. Adults performed
above chance overall (p = .870, 95% CI [.789, .923], p , .001).
Although their performance differed by condition, v2(1) = 253.95,
p , .001, it was nevertheless above chance in both conditions
(curved arc condition: p = .959, 95% CI [.923, .979], p , .001;
straight arc condition: p = .763, 95% CI [.644, .881], p , .001). In
the model with curvature as an additional fixed effect, there was a
main effect of condition, v2(1) = 87.95, p , .001, curvature,
v2(1) = 9.90, p = .002, and an interaction between condition and
curvature, v2(1) = 6.24, p = .012. Adults performed better when the
paths were more curved in the curved arc condition (p = .883, 95%
CI [.681, .963], p = .002), but curvature did not affect their accuracy
in the straight arc condition (p = .509, 95% CI [.293, .721], p =
.940).
Finally, adults’ responses in the straight arc condition predicted

their responses in the curved arc condition, v2(1) = 4.15, p = .042.
In this regression, there was no main effect of curvature, v2(1) =
.92, p = .337, and there was no effect of the interaction term,
v2(1) = 2.70, p = .101.

Exploratory Results

An unplanned analysis investigating the effects of age (treated
as a continuous variable) and condition on accuracy in the child
sample found a main effect of condition, v2(1) = 566.54, p , .001,
with better performance in the curved arc condition, a main effect
of age, v2(1) = 7.21, p = .007, with older children performing bet-
ter than younger children, and an interaction between condition
and age, v2(1) = 12.67, p , .001. Older children performed better
than younger children in the curved arc condition (p = .500, 95%
CI [.500, .500], p = .007), but not in the straight arc condition (p =
.500, 95% CI [.500, .500], p = .442). Younger children (median
split) nevertheless still performed above chance in the curved arc
condition (p = .640, 95% CI [.559, .731], p, .001).
Additional unplanned analyses investigated the effects of age

group (treated as a categorical variable) on accuracy and consis-
tency in the child and adult samples. The accuracy analysis
revealed a main effect of condition, v2(1) = 246.59, p, .001, with
better performance in the curved arc condition, and a main effect
of age group, v2(1) = 42.54, p , .001, with adults performing bet-
ter than children. The interaction term further characterized these
results, v2(1) = 2.85, p = .091. The consistency analysis revealed a
main effect of age group, v2(1) = 22.62, p , .001, with adults per-
forming better than children, but responses in the straight arc con-
dition did not predict responses in the curved arc condition,
v2(1) = .08, p = .774, and the interaction was not significant,
v2(1) = .33, p = .566.

Discussion

Children and adults were shown paths between two points on
2D pictures of 3D spheres and were asked to judge which paths
were the most efficient for an actor to get from a starting point to a
goal object. Children aged between 6 and 8 years answered below
chance when comparing curved geodesics to straight arcs, but they
answered above chance when comparing curved geodesics to
curved arcs. Like children, adults performed better when curved
geodesics were compared to curved versus straight arcs, but unlike
children, they succeeded in both conditions. Moreover, adults’
responses across the two conditions showed some internal consis-
tency: Those adults who responded correctly to curved geodesics
in the straight arc condition were also more likely to respond cor-
rectly to curved geodesics in the curved arc condition. Finally,
from age 6 to 8 years, children improve in their identification of
curved geodesics versus curved arcs.

Two results suggest that both children and adults are biased to
judge the most efficient path between two points based on planar
linearity, consistent with prior work (Izard et al., 2011), i.e.,
straight arcs interfere with participants’ identification of curved
geodesics as the most efficient path between two points: Children
and adults performed worse when comparing curved geodesics
with straight versus curved arcs; and children performed worse
when comparing more-curved geodesics with straight versus
curved arcs. Strikingly, however, our results also show that adults
recognize spherical linearity (i.e., geodesics) despite this bias and
that both children and adults succeed in identifying spherical line-
arity when there is no conflicting planar linearity.

Children and adults’ success in identifying curved geodesics in
pictures of spheres is particularly surprising given that even adults
are rarely taught the principles of spherical geometry (Lénárt, 2003;
Sinclair et al., 2017) and prior work had suggested a strong and
growing planar bias in children’s and adults’ geometric reasoning
about spheres across development, especially in children and adults
from formally educated societies (Izard et al., 2011). Human intu-
itions about the shortest paths between two points in space in gen-
eral may thus be flexible beyond the Euclidean plane to include
spherical surfaces. In addition, children’s seemingly advanced judg-
ments about spherical geometry suggest the possibility of effective
geometry pedagogies that go beyond planar contexts.

The present study may even underestimate this ability. For exam-
ple, in the straight arc condition, the locations of the start and end
points of the paths were matched between curved geodesics and
straight arcs. Controlling for these start- and end-point locations
meant that the depicted curved geodesics were longer in the picture
than the depicted straight arcs, which may have interfered with par-
ticipants’ judgements instead of, or in addition to, the interference
from planar linearity. Future studies might investigate how matching
the depicted path lengths by moving the start and end points closer
together for the curved geodesics might affect performance. Second,
participants saw 2D pictures of 3D surfaces, as they might see them
in a geometry textbook. But, using 2D pictures may have made any
intuitions about 3D geometry harder to access, especially intuitions
about straight arcs, which appear straight from only one viewpoint of
the sphere. Paths presented on real 3D objects or on real or animated
3D objects, in which an actor’s movement along paths unfolds over
time, might facilitate performance (e.g., Hart et al., 2022; Joh et al.,
2011; Smith et al., 2018). Future studies could thus evaluate how the
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dimensionality and dynamics of experimental displays might differ-
entially engage participants’ intuitions about 3D geometry and
explore whether simulation versus rule-based reasoning supports
accurate judgments about spherical linearity.
Our design also relied on eliciting participants’ judgments in con-

texts that may have enhanced their performance. In particular, ques-
tions about spherical linearity were posed in the context of judgments
about an agent’s navigation and efficient action. Evidence from stud-
ies with humans and nonhuman animals suggests flexibility with ge-
ometry for navigation, including use of slopes and curvature (Jeffery
et al., 2013; Nardi et al., 2011; Widdowson &Wang, 2022), although
the specific geometric representations underlying these abilities are
still debated. Recognition of the shortest path between two points on
a nonplanar surface might thus be present in human judgements
about navigation. In addition, a large body of research on infants’
expectations about the goal-directed actions of others has found that
infants expect others to take the most efficient paths to their goals
(e.g., Gergely et al., 1995; Liu & Spelke, 2017). Although these stud-
ies have strictly relied on planar surfaces, infants’ expectations may
extend to curved surfaces. Future studies might evaluate what sensi-
tivities to surfaces with different geometries underlie infants’ and
children’s judgments of navigation and efficient action and whether
such sensitivities are elicited and accessible outside of the domains of
place or action understanding.

Conclusion

Philosophers throughout history to the 19th century debated the
alignment between the natural geometry in our minds and that of
the world (Kant, 1781/1998; Plato 385 BCE/1949), but always
within the context of what would become formalized as Euclidean
geometry. The history of mathematics then showed us that we
humans are not limited to planar Euclidean geometry when describ-
ing either the world or the formal system of geometry itself (Tru-
deau, 2001). Previous work focusing on the origins of humans’
unique capacity for understanding geometry has nevertheless con-
tinued to emphasize only where our natural geometric intuitions
align with planar Euclidean geometry (e.g., Dillon et al., 2013; Dil-
lon & Spelke, 2018; Izard et al., 2011; Sablé-Meyer et al., 2021;
Spelke et al., 2010). The present findings instead emphasize the de-
velopment of those geometric intuitions that are not Euclidean,
insisting that a comprehensive understanding of humans’ geometric
cognition, including its readiness for learning formal geometry,
requires looking beyond planar Euclidean contexts. The present
work thus also contributes to growing evidence that our explicit rea-
soning about simple geometric figures is not comprehensively
explained solely by Euclidean principles (e.g., Hart et al., 2022).
Both natural and Euclidean geometry have sets of principles, and

the results of previous research indicate that within natural geome-
try are principles that allow for an intuitive grasp Euclidean geome-
try. Our present work suggests that Euclidean geometry does not
exhaust natural geometry or vice versa. We found that intuitions
about a foundational principle in all formal geometries—linearity—
are at least present in judgments about an agent’s efficient naviga-
tion, even if that navigation is happening on a complex surface in
terms of its formal description. Children may not naturally develop
into “little Euclids,” rather, they may develop a natural geometry
that gives us humans intuitions not limited to the formal axioms of
Euclidean geometry or even to the Euclidean plane.
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