BRIEF REPORT

Mind-Bending Geometry: Children’s and Adults’ Intuitions About Linearity on Spheres

Holly Huey1, Matthew Jordan2, Yuval Hart3, and Moira R. Dillon4

1 Department of Psychology, University of California, San Diego
2 Arts and Science Program, McMaster University
3 Department of Psychology, Hebrew University of Jerusalem
4 Department of Psychology, New York University

Humans appear to intuitively grasp definitions foundational to formal geometry, like definitions that describe points as infinitely small and lines as infinitely long. Nevertheless, previous studies exploring human’s intuitive natural geometry have consistently focused on geometric principles in planar Euclidean contexts and thus may not comprehensively characterize humans’ capacity for geometric reasoning. The present study explores whether children and adults can reason about linearity in spherical contexts. We showed 48 children (age range: 6–8 years) and 48 adults from the U.S. Northeast two different paths between the same two points on pictures of spheres and asked them to judge which path was the most efficient for an actor to get from a starting point to a goal object. In one kind of trial, both paths looked curved in the pictures, and in another kind of trial, the correct curved-looking path was paired with an incorrect straight-looking path. Adults were successful on both kinds of trials, and although children often chose the incorrect straight-looking path, they were surprisingly successful at identifying the efficient path when comparing two that were curved. Children thus may build on a natural geometry that gives us humans intuitions that are not limited to the formal axioms of Euclidean geometry or even to the Euclidean plane.

Public Significance Statement

Children and adults succeed in judgements of spherical linearity, i.e., identifying a “line” on a sphere as the most efficient path between two points. Children’s seemingly advanced judgments about spherical geometry suggest the possibility of effective geometry pedagogies that go beyond planar contexts.

Keywords: Euclidean geometry, spherical geometry, spatial cognition, navigation, action understanding

Before surfaces, there are lines, at least according to Euclid’s Elements. Definitions 2 and 4 of the Elements, historically among the most important texts in all of formal mathematics, introduce a line as infinitely thin and a straight line as lying evenly with its points (Euclid 300 BCE/2007; Definitions 1 and 3 introduce points, and Definitions 5 through 7 introduce surfaces). This definition of a straight line is innovative and curious upon reflection (Trudeau, 2001), but we intuitively grasp it as picking out the shortest, most

Moira R. Dillon https://orcid.org/0000-0002-6689-5316

This work was preregistered, and the protocol, data, analysis code, and a full report of two pilot studies are accessible on the Open Science Framework (https://osf.io/thbpv/).

This work was supported by a National Science Foundation CAREER Award (DRL-1845924; to Moira R. Dillon) and by a Jacobs Foundation Early Career Fellowship (to Moira R. Dillon). We thank Ofelia Garcia, Nicole Loncar, Sara Okun, Simran Suresh, Shannon Yasuda, the National Museum of Mathematics, and the Museum’s participating families.

Holly Huey served as lead for data curation, contributed equally to methodology, and served in a supporting role for conceptualization, formal analysis, and writing–review and editing. Matthew Jordan served as lead for conceptualization and formal analysis, contributed equally to methodology, and served in a supporting role for visualization and writing–review and editing. Holly Huey and Matthew Jordan contributed equally to this work and are listed alphabetically. Yuval Hart served in a supporting role for conceptualization, formal analysis, and supervision. Moira R. Dillon served as lead for funding acquisition, project administration, supervision, and writing–original draft and contributed equally to conceptualization, formal analysis, methodology, and visualization.

Correspondence concerning this article should be addressed to Moira R. Dillon, Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, United States. Email: moira.dillon@nyu.edu
efficient path between two points. For example, imagine taking a string by its ends: It does not form a straight line until you pull it taut so that it lies evenly with its ends. Euclid may have thus intended to exclude any curve, and this is the meaning of Definition 4 on a plane. But is our identification of straight lines, like their definition, prior to and perhaps not limited to any particular kind of geometric surface? On a sphere, for example, a taut string becomes a curved geodesic. Are our intuitions strictly Euclidean or are they more flexible, allowing us to identify such lines on surfaces that are not planar, like spherical surfaces?

Prior work investigating humans’ ability to identify and reason about such foundational definitions, principles, and figures of formal geometry has consistently focused on geometric intuitions that align with planar Euclidean geometry. For example, recent research relying on cross-species, cross-cultural, developmental, and computational approaches suggests that from childhood and regardless of formal schooling, humans, but not nonhuman primates, are spontaneously attuned to foundational principles of planar Euclidean geometry (e.g., lines, length, parallelism, perpendicularity, and symmetry) such that humans uniquely are able to mentally compose these Euclidean principles with an algorithmic-like “language of thought” for geometry (Amalric et al., 2017; Sablé-Meyer et al., 2021). Other research relying on these same broad approaches suggests that separate cognitive systems for geometry inherited by humans through evolution—one system that prioritizes distance and directional information to support navigation and one system that prioritizes length and angle information to support visual form recognition—provide complementary geometric sensitivities that get productively combined through human development to form an intuitive natural geometry consistent with planar Euclidean geometry (Dillon et al., 2013; Dillon & Spelke, 2018; Spelke et al., 2010). Even studies that have probed humans’ both planar and spherical geometric intuitions have nevertheless emphasized that intuitive geometry reflects planar Euclidean principles. For example, Izard et al. (2011) investigated the geometric intuitions of adults and children from the Unites States, France, and from an Amazonian village, in which there is no formal schooling in geometry. Participants were asked to reason about the properties of points and lines described in the context of a planar surface and, for a subset of questions, a spherical surface (e.g., “Can two lines never intersect?”). Older children and adults across cultures performed well on the questions presented in the planar context and changed their answers as needed when the same questions were presented in the spherical context. Younger children showed less sensitivity to context but also produced fewer correct planar responses. Izard et al. (2011) concluded that humans are cognitively prepared to reason about planar surfaces and that planar geometric intuitions spontaneously develop in all humans and are reinforced by everyday experiences (e.g., navigation) and formal education. Because of the small sample sizes (an inherent limitation to testing the Amazonian population) and because of the relatively few questions presented in the spherical context, this study nevertheless could not support any strong developmental conclusions about participants’ spherical intuitions.

The present work does not adjudicate among the cognitive theories outlining human’s intuitive natural geometry or refute the idea that humans may develop geometric intuitions that support reasoning about planar Euclidean geometry. Rather, the present work suggests that in its sole focus on planar contexts, prior work falls short in comprehensively describing human’s intuitive geometry as both a central cognitive achievement of the human mind and as a foundation for humans’ capacity to understand formal geometries more generally, both Euclidean and non-Euclidean. While different formal geometries describe different surfaces, they nevertheless adopt the same principle of a line as the shortest, most efficient path between two points. In investigating children’s and adults’ intuitions about lines on spherical surfaces in the present study, we thus explore the possibility that children and adults have geometric intuitions that go beyond planar contexts, allowing us to provide a more complete picture of human intuitive natural geometry.

Method

Participants

Participants were 48 English-speaking children, ranging in age from 6 to 8 years (\(M_{\text{age}} = 7\) years, 7 months; \(\text{range} = 6\) years, 1 month–8 years, 11 months; 27 girls). One additional child was excluded because they had participated in a pilot version of the study. Participants were recruited from the National Museum of Mathematics in New York City and New York University’s child participant database and were given a small thank you gift. Forty-eight English-speaking adults (\(M_{\text{age}} = 19\) years; \(\text{range} = 18–22\) years; 34 women) also participated. An additional six adults were excluded because of failure to follow task directions (\(n = 3\)); choosing the response on one side of the screen over 90% of the time (\(n = 1\)); or experimenter error (\(n = 2\)). Adults were recruited from New York University’s participant study pool and were given course credit or payment. The use of human participants for this study was approved by the Institutional Review Board at New York University.

Material, Design, and Procedure

The stimuli consisted of 90 two-dimensional (2D) pictures of three-dimensional (3D) spheres generated by custom code in Mathematica (Version 11; Wolfram Research, Inc., 2016). Each sphere depicted a purple point and an orange point, connected by a thin black path. The path could either be the shortest path between the points (i.e., it could be a geodesic, which, if the path continued around the whole sphere, would be a great-circle and cut the sphere in half; see Figure 1), or it could not be the shortest path between the two points (i.e., it could be an arc, which, if the path continued around the whole sphere, would not cut the sphere in half). Because each picture captured the sphere from only one point of view, the 2D geometric properties of how the paths looked varied. In particular, both geodesics and arcs could look straight or curved in the picture. By varying the point of view at which the spheres were presented, we could therefore vary both spherical linearity (i.e., whether the path was a geodesic or arc) and planar linearity (i.e., whether the path looked straight or curved on the 2D picture plane).

On each trial, participants saw a pair of sphere pictures (see Figure 2) presented using PsychoPy (Version 1.90.3; Peirce et al., 2019) on a 13-in. laptop screen by an experimenter in a quiet testing room. The distance between the two depicted points on the spheres and their heights on the spheres were always matched across
pictures in the same trial but varied across trials, with five possible distances and three possible heights above or below the equator. Curved paths varied in curvature in a semicontinuous way based on a geodesic’s true curvature. Paths farther from the equator appeared more curved than paths nearer to the equator since geodesics appear straight at the equator (see Figure 1). For paths at the same height on the sphere, those whose endpoints were farther apart versus closer together appeared more curved since paths with more distant points cover more of the sphere’s curved surface.

In two blocks of 30 trials each, participants were asked to evaluate which of the two depicted paths was the “easiest,” most efficient path from one point to the other on the sphere (see Figure 2A). In one trial type (i.e., the curved arc condition), participants compared curved geodesics to curved arcs (see Figure 2B). The curved arcs were generated in Photoshop (CC 2015.5, Version 17.0; Adobe, Inc., 2015) by reflecting the curved geodesics across the principal axis between the two points. For these trials, participants thus compared two paths that matched in their depicted length and curvature. In the other trial type (the straight arc condition), participants compared curved geodesics of the same length and curvature as those in the curved arc condition to straight arcs (see Figure 2C). The straight arcs depicted what looked like a straight path in the picture between the two points, and so for these trials, participants compared two paths that did not match either in their depicted length or in their curvature. Curved geodesics were the correct responses in both conditions.

Trial types were mixed within each block, trial order within each block was randomized across participants, and curved geodesics appeared 50% of the time on each side of the screen. To protect against any effects of path orientation on performance, paths were not presented within 10° of the horizontal. They also varied in orientation across trials and across participants (whole-degree value ranges: 10°–170° and 190°–350°) but were matched across the two pictures in each trial.

The task was designed to probe participants’ intuitions of a line as the most efficient path between two points on a sphere without requiring their knowledge of any formal definitions. Prior to completing the test trials, participants completed practice trials, in which they were introduced to a “very lazy” purple snail, who always took the most efficient path from a starting point to an orange mushroom, a favorite food. Across five practice trials, participants were asked to judge, for example, whether the snail would push two blocks (correct) or three blocks (incorrect) out of the way to get to the mushroom. Participants received corrective feedback on the practice trials. Participants were then shown a picture of a purple point and an orange point on an otherwise blank screen and were told that the snail would look like the purple point, and the mushroom would look like the orange point. Finally, they were shown a large picture of sphere (with no points or paths) and were told that the snail and mushroom would be on a “perfectly round land” shaped like a “really big ball.” For each test trial, participants saw two pictures of spheres, one on each side of the screen and each presenting a path. The experimenter asked which path was the easiest path the snail could take to the mushroom and recorded with a button press to which picture participants pointed. Participants received no corrective feedback on the test trials.

Results

Children’s responses are presented in Figure 3. We focused on the accuracy and consistency of participants’ responses, and Wald tests evaluate regressions’ main effects and interactions. A binomial mixed-model logistic regression found that children performed significantly below chance overall (p = .455, 95% confidence interval [CI] [.426, .485], p = .003). An additional regression with accuracy as the dependent variable, condition as a fixed effect, and random intercepts for participants revealed a main effect of condition, χ²(1) = 568.44, p < .001, with children performing above chance in the condition comparing curved geodesics to curved arcs (p = .695, 95% CI [.658, .730], p < .001) but below chance in the condition comparing curved geodesics to straight arcs (p = .216, 95% CI [.187, .248], p < .001). A third regression that added curvature as a fixed effect revealed an effect of condition, χ²(1) = 133.11, p < .001, curvature, χ²(1) = 24.99, p < .001, and an interaction between condition and curvature, χ²(1) = 35.34, p < .001. Curvature had a significant effect on accuracy in both conditions (curved arc condition: p = .888, 95% CI
In the curved arc condition, children performed better with greater curvature, but in the straight arc condition, children performed worse with greater curvature.

We next examined the consistency of children’s responses by evaluating whether an individual’s correct response to a geodesic curve in the straight arc condition predicted their correct response to a geodesic curve of the same length and curvature in the curved arc condition. A binomial mixed-model logistic regression with responses to curved geodesics in the curved arc condition as the dependent variable, responses to curved geodesics in the straight arc condition and curvature as fixed effects, and random intercepts for

Figure 2
A Child Participant and Screen Shots of Example Trials

Note. A child participant (A). In the curved arc condition (B), participants compared curved arcs (incorrect; left) to curved geodesics (correct; right). In the straight arc condition (C), participants compared curved geodesics (correct; left) of the same length and curvature as those in the curved arc condition to straight arcs (incorrect; right). The curved geodesics were presented at different orientations across conditions. See the online article for the color version of this figure.

Figure 3
The Proportion of Geodesic and Arc Responses Across Trials and Participants in the Curved Arc and Straight Arc Conditions for Both Children and Adults

Note. The curved geodesics were always the correct response, and chance responding was 50%; see text for statistical analyses. See the online article for the color version of this figure.
the particular geodesic queried and for participants revealed that children’s responses in the straight arc condition did not predict their responses in the curved arc condition, $\chi^2(1) = .27, p = .604$. There was a main effect of curvature, $\chi^2(1) = 19.54, p < .001$, and there was no effect of the interaction term, $\chi^2(1) = .51, p = .476$.

Results With Adults

Adults’ responses are presented in Figure 3. All analyses were identical to those run on the children’s data. Adults performed above chance overall ($p = .870, 95\% CI [.789, .923], p < .001$). Although their performance differed by condition, $\chi^2(1) = 253.95, p < .001$, it was nevertheless above chance in both conditions (curved arc condition: $p = .959, 95\% CI [.923, .979], p < .001$; straight arc condition: $p = .763, 95\% CI [.644, .881], p < .001$). In the model with curvature as an additional fixed effect, there was a main effect of condition, $\chi^2(1) = 87.95, p < .001$, curvature, $\chi^2(1) = 9.90, p = .002$, and an interaction between condition and curvature, $\chi^2(1) = 6.24, p = .012$. Adults performed better when the paths were more curved in the curved arc condition ($p = .883, 95\% CI [.681, .963], p = .002$), but curvature did not affect their accuracy in the straight arc condition ($p = .509, 95\% CI [.293, .721], p = .940$).

Finally, adults’ responses in the straight arc condition predicted their responses in the curved arc condition, $\chi^2(1) = 4.15, p = .042$. In this regression, there was no main effect of curvature, $\chi^2(1) = .92, p = .337$, and there was no effect of the interaction term, $\chi^2(1) = 2.70, p = .101$.

Exploratory Results

An unplanned analysis investigating the effects of age (treated as a continuous variable) and condition on accuracy in the child sample found a main effect of condition, $\chi^2(1) = 566.54, p < .001$, with better performance in the curved arc condition, a main effect of age, $\chi^2(1) = 7.21, p = .007$, with older children performing better than younger children, and an interaction between condition and age, $\chi^2(1) = 12.67, p < .001$. Older children performed better than younger children in the curved arc condition ($p = .500, 95\% CI [.500, .500], p = .007$), but not in the straight arc condition ($p = .500, 95\% CI [.500, .500], p = .442$). Younger children (median split) nevertheless still performed above chance in the curved arc condition ($p = .640, 95\% CI [.559, .731], p < .001$).

Additional unplanned analyses investigated the effects of age group (treated as a categorical variable) on accuracy and consistency in the child and adult samples. The accuracy analysis revealed a main effect of condition, $\chi^2(1) = 246.59, p < .001$, with better performance in the curved arc condition, and a main effect of age group, $\chi^2(1) = 42.54, p < .001$, with adults performing better than children. The interaction term further characterized these results, $\chi^2(1) = 2.85, p = .091$. The consistency analysis revealed a main effect of age group, $\chi^2(1) = 22.62, p < .001$, with adults performing better than children, but responses in the straight arc condition did not predict responses in the curved arc condition, $\chi^2(1) = .08, p = .774$, and the interaction was not significant, $\chi^2(1) = .33, p = .566$.

Discussion

Children and adults were shown paths between two points on 2D pictures of 3D spheres and were asked to judge which paths were the most efficient for an actor to get from a starting point to a goal object. Children aged between 6 and 8 years answered below chance when comparing curved geodesics to straight arcs, but they answered above chance when comparing curved geodesics to curved arcs. Like children, adults performed better when curved geodesics were compared to curved versus straight arcs, but unlike children, they succeeded in both conditions. Moreover, adults’ responses across the two conditions showed some internal consistency: Those adults who responded correctly to curved geodesics in the straight arc condition were also more likely to respond correctly to curved geodesics in the curved arc condition. Finally, from age 6 to 8 years, children improve in their identification of curved geodesics versus curved arcs.

Two results suggest that both children and adults are biased to judge the most efficient path between two points based on planar linearity, consistent with prior work (Izard et al., 2011), i.e., straight arcs interfere with participants’ identification of curved geodesics as the most efficient path between two points: Children and adults performed worse when comparing curved geodesics with straight versus curved arcs; and children performed worse when comparing more-curved geodesics with straight versus curved arcs. Strikingly, however, our results also show that adults recognize spherical linearity (i.e., geodesics) despite this bias and that both children and adults succeed in identifying spherical linearity when there is no conflicting planar linearity.

Children and adults’ success in identifying curved geodesics in pictures of spheres is particularly surprising given that even adults are rarely taught the principles of spherical geometry (Lénárt, 2003; Sinclair et al., 2017) and prior work had suggested a strong and growing planar bias in children’s and adults’ geometric reasoning about spheres across development, especially in children and adults from formally educated societies (Izard et al., 2011). Human intuitions about the shortest paths between two points in space in general may thus be flexible beyond the Euclidean plane to include spherical surfaces. In addition, children’s seemingly advanced judgments about spherical geometry suggest the possibility of effective geometry pedagogies that go beyond planar contexts.

The present study may even underestimate this ability. For example, in the straight arc condition, the locations of the start and end points of the paths were matched between curved geodesics and straight arcs. Controlling for these start- and end-point locations meant that the depicted curved geodesics were longer in the picture than the depicted straight arcs, which may have interfered with participants’ judgements instead of, or in addition to, the interference from planar linearity. Future studies might investigate how matching the depicted path lengths by moving the start and end points closer together for the curved geodesics might affect performance. Second, participants saw 2D pictures of 3D surfaces, as they might see them in a geometry textbook. But, using 2D pictures may have made any intuitions about 3D geometry harder to access, especially intuitions about straight arcs, which appear straight from only one viewpoint of the sphere. Paths presented on real 3D objects or on real or animated 3D objects, in which an actor’s movement along paths unfolds over time, might facilitate performance (e.g., Hart et al., 2022; Joh et al., 2011; Smith et al., 2018). Future studies could thus evaluate how the
dimensionality and dynamics of experimental displays might differ-
entially engage participants’ intuitions about 3D geometry and
explore whether simulation versus rule-based reasoning supports
accurate judgments about spherical linearity.

Our design also relied on eliciting participants’ judgments in con-
texts that may have enhanced their performance. In particular, ques-
tions about spherical linearity were posed in the context of judgments
about an agent’s navigation and efficient action. Evidence from stud-
ies with humans and nonhuman animals suggests flexibility with ge-
ometry for navigation, including use of slopes and curvature (Jeffery
et al., 2013; Nardi et al., 2011; Widdowson & Wang, 2022), although
the specific geometric representations underlying these abilities are
still debated. Recognition of the shortest path between two points on
a nonplanar surface might thus be present in human judgements
about navigation. In addition, a large body of research on infants’
expectations about the goal-directed actions of others has found that
infants expect others to take the most efficient paths to their goals
(e.g., Gergely et al., 1995; Liu & Spelke, 2017). Although these studies
have strictly relied on planar surfaces, infants’ expectations may
tend to curved surfaces. Future studies might evaluate what sensi-
tivities to surfaces with different geometries underlie infants’ and
children’s judgments of navigation and efficient action and whether
such sensitivities are elicited and accessible outside of the domains of
place or action understanding.

Conclusion

Philosophers throughout history to the 19th century debated the
alignment between the natural geometry in our minds and that of
the world (Kant, 1781/1998; Plato 385 BCE/1949), but always
within the context of what would become formalized as Euclidean
gometry. The history of mathematics then showed us that we
humans are not limited to planar Euclidean geometry when describ-
ing either the world or the formal system of geometry itself (Tru-
dean, 2001). Previous work focusing on the origins of humans’
unique capacity for understanding geometry has nevertheless con-
tinued to emphasize only where our natural geometric intuitions
align with planar Euclidean geometry (e.g., Dillon et al., 2013; Dil-
lon & Spelke, 2018; Izard et al., 2011; Sablé-Meyer et al., 2021;
Spelke et al., 2010). The present findings instead emphasize the de-
velopment of those geometric intuitions that are not Euclidean,
insisting that a comprehensive understanding of humans’ geometric
cognition, including its readiness for learning formal geometry,
requires looking beyond planar Euclidean contexts. The present
work thus also contributes to growing evidence that our explicit rea-
soning about simple geometric figures is not comprehensively
explained solely by Euclidean principles (e.g., Hart et al., 2022).

Both natural and Euclidean geometry have sets of principles, and
the results of previous research indicate that within natural geo-
metry are principles that allow for an intuitive grasp Euclidean geo-
metry. Our present work suggests that Euclidean geometry does not
exhaust natural geometry or vice versa. We found that intuitions
about a foundational principle in all formal geometries—linearity—
are at least present in judgments about an agent’s efficient naviga-
tion, even if that navigation is happening on a complex surface in
terms of its formal description. Children may not naturally develop
into “little Euclids,” rather, they may develop a natural geometry
that gives us humans intuitions not limited to the formal axioms of
Euclidean geometry or even to the Euclidean plane.

References

.com/products/photoshop.html

Amaral, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S.
(2017). The language of geometry: Fast comprehension of geometrical
primitives and rules in human adults and preschoolers. PLoS Computa-
tional Biology, 13(1), Article e1005273. https://doi.org/10.1371/journal.
pei.1005273

Dillon, M. R., Huang, Y., & Spelke, E. S. (2013). Core foundations of
abstract geometry. Proceedings of the National Academy of Sciences of
the United States of America, 110(35), 14191–14195. https://doi.org/10
.1073/pnas.1312640110

Dillon, M. R., & Spelke, E. S. (2018). From map reading to geometric intu-
tions. Developmental Psychology, 54(7), 1304–1316. https://doi.org/10
.1037/dev000509

J. L. Heiberg, Ed.). R. Fitzpatrick. (Original work published c. 300
BCE)

.org/10.1016/0010-0277(95)00661-H

Hart, Y., Mahadevan, L., & Dillon, M. R. (2022). Euclid’s random walk:
Developmental changes in the use of simulation for geometric reasoning.
.13070

Izard, V., Pica, P., Spelke, E. S., & Dehaene, S. (2011). Flexible intuitions
of Euclidean geometry in an Amazonian indigene group. Proceedings of
the National Academy of Sciences of the United States of America,
108(24), 9782–9787. https://doi.org/10.1073/pnas.1016686108

Jeffery, K. J., Jovalekic, A., Verriots, M., & Hayman, R. (2013). Navigat-
ing in a three-dimensional world. Behavioral and Brain Sciences, 36(5),
523–543. https://doi.org/10.1017/S0140525X12002476

Joh, A. S., Jaswal, V. K., & Keen, R. (2011). Imagining a way out of
the gravity bias: Preschoolers can visualize the solution to a spatial problem.
Child Development, 82(3), 744–750. https://doi.org/10.1111/j.1467
8624.2011.01584.x

Cambridge University Press. (Original work published 1781).https://doi
.org/10.1017/CBO9780511804649

Lénárt, I. (2003). Non-Euclidean adventures on the Lénárt sphere: Investi-
gations in planar and spherical geometry. Key Curriculum Press.

Liu, S., & Spelke, E. S. (2017). Six-month-old infants expect agents to
minimize the cost of their actions. Cognition, 160, 35–42. https://doi
.org/10.1016/j.cognition.2016.12.007

Nardi, D., Newcombe, N. S., & Shipley, T. F. (2011). The world is not
flat: Can people reorient using slope? Journal of Experimental Psychol-
.org/10.1037/a0021614

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,
Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experi-
https://doi.org/10.3758/s13428-018-01193-y

published c. 385 BCE)

SABLÉ-MEYER, M., FAGOT, J., CAPAROS, S., VAN KERKOERLE, T., AMALRIC, M., &
and baboons: A putative signature of human singularity. Proceedings of
the National Academy of Sciences of the United States of America,
118(16), 1–10. https://doi.org/10.1073/pnas.2023123118

Sinclair, N., Cirillo, M., & De Villiers, M. (2017). The learning and teaching
of geometry. In J. Cai (Ed.), Compendium for research in mathematics
education (pp. 457–489). National Council of Teachers of Mathematics.

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

